163
Views
3
CrossRef citations to date
0
Altmetric
Articles

From graphyne to cata-condensed (Acenographynes) and peri-condensed PAHs-graphyne derivatives

ORCID Icon, &
Pages 535-544 | Received 24 Feb 2018, Accepted 20 Mar 2018, Published online: 13 Dec 2018

References

  • (a) Diudea, M. V. Multi-Shell Polyhedral Clusters; Springer International Publishing: Switzerland, 2018. (b) Ashrafi, A. R.; Diudea, M. V. (Eds.). Distance, symmetry, and topology in carbon nanomaterials; Springer International Publishing: Switzerland, 2016. (c) Putz, M.V.; Ori, O. (Eds.) Exotic Properties of Carbon Nanomatter; Springer: Dordrecht, 2015. (d) Diudea, M. V.; Nagy, C. L. (Eds.). Diamond and Related Nanostructures; Springer: Dordrecht, 2013. (e) Ashrafi, A. R.; Cataldo, F.; Iranmanesh, A.; Ori, O. (Eds.). Topological Modelling of Nanostructures and Extended Systems; Springer Verlag: Berlin, 2013; Vol. 7. (f) Cataldo, F.; Graovac, A.; Ori, O. (Eds.). The Mathematics and Topology of Fullerenes; Springer Science & Business Media: Dordrecht, 2011. (g) Putz, M.V. Carbon Bonding and Structures; Springer Science & Business Media: Dordrecht, 2011. (h) Colombo, L.; Fasolino, A. (Eds.). Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes; Springer Science & Business Media: Dordrecht, 2010.
  • (a) Stang, P. J.; Diederich, F. (Eds.). Modern Acetylene Chemistry; Wiley-VCH: Weinheim, 1995. (b) Diederich, F.; Stang, P. J.; Tykwinski, R. R. (Eds.). Acetylene Chemistry: Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, 2005. (c) Haley, M. M. Synthesis and Properties of Annulenic Subunits of Graphyne and Graphdiyne Nanoarchitectures. Pure Appl. Chem. 2008, 80, 519–532.
  • (a) Diercks, R.; Armstrong, J. C.; Boese, R.; Vollhardt, K. P. C. Hexaethynylbenzene. Angew. Chemie Int. Ed. 1986, 25, 268–269. (b) El-Shall, M. S.; Vollhardt, K. P. C. Molecular Structure and Electronic Properties of Hexaethynylbenzene. J. Mol. Struct. 1989, 183, 175–181. (c) Neenan, T. X.; Whitesides, G. M. Synthesis of High Carbon Materials from Acetylenic Precursors. Preparation of Aromatic Monomers Bearing Multiple Ethynyl Groups. J. Org. Chem. 1988, 53, 2489–2496. (d) Anthony, J. E.; Khan, S. I.; Rubin, Y. 1, 3, 5/2, 4, 6-Differentiated Hexaalkynylbenzenes: Absorption and Fluorescence Properties of A D3h-Symmetric Donor-Substituted System. Tetrahedron Lett. 1997, 38, 3499–3502.
  • (a) Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; Liu, Z. Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction. J. Amer. Chem. Soc. 2015, 137, 7596–7599. (b) Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Bjork, J.; Klyatskaya, S.; Klappenberg, F.; Ruben, M.; Barth, J.V. Homo-Coupling of Terminal Alkynes on a Noble Metal Surface. Nature Comm. 2012, 3, 1286 ( 8 pages).
  • (a) Shekar, S. C.; Swathi, R. S. Molecular Switching on Graphyne and Graphdiyne: Realizing Functional Carbon Networks in Synergy with Graphene. Carbon 2018, 126, 489–499. (b) Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Synthesis and Properties of 2d Carbon Graphdiyne. Accounts Chem. Res. 2017, 50, 2470–2478. (c) Chang, F.; Huang, L.; Li, Y.; Guo, C.; Diao, Q. A Short Review of Synthesis of Graphdiyne and its Potential Applications. Internat. J. Electrochem. Sci. 2017, 12, 10348–10358. (d) Ketabi, N.; Tolhurst, T. M.; Leedahl, B.; Liu, H.; Li, Y.; Moewes, A. How Functional Groups Change the Electronic Structure of Graphdiyne: Theory and Experiment. Carbon 2017, 123, 1–6. (e) Ma, S.; Sun, L. Z.; Zhang, K. W. Prediction of Two Planar Carbon Allotropes with Large Meshes. Phys. Chem. Chem. Phys. 2016, 18, 1172–1177. (f) Wang, J. T.; Chen, C.; Li, H. D.; Mizuseki, H.; Kawazoe, Y. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in Sp+Sp2 Hybrid Networks. Scientific Rep. 2016, 6, 24665. (g) Cocq, K.; Lepetit, C.; Maraval, V.; Chauvin, R. “Carbo-Aromaticity” and Novel Carbo-Aromatic Compounds. Chem. Soc. Rev. 2015, 44, 6535–6559. (h) Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and Graphyne: From Theoretical Predictions to Practical Construction. Chem. Soc. Rev. 2014, 43, 2572–2586. (i) Peng, Q.; Dearden, A. K.; Crean, J.; Han, L.; Liu, S.; Wen, X.; De, S. New Materials Graphyne, Graphdiyne, Graphone, and Graphane: Review of Properties, Synthesis, and Application in Nanotechnology. Nanotechnol. Sci. Applicat. 2014, 7, 1–29. (j) Wang, J.; Zhang, S.; Zhou, J.; Liu, R.; Du, R.; Xu, H.; Liu, Z. Identifying Sp–Sp2 Carbon Materials by Raman and Infrared Spectroscopies. Phys. Chem. Chem. Phys. 2014, 16, 11303–11309. (k) Ivanovskii, A. L. Graphynes and Graphdyines. Progr. Solid State Chem. 2013, 41, 1–19. (l) Srinivasu, K.; Ghosh, S. K. Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications. J. Phys. Chem. C, 2012, 116, 5951–5956. (m) Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of Graphdiyne Nanoscale Films. Chem. Comm. 2010, 46, 3256–3258.
  • Van Krevelen, D. W. Properties of Polymers: Their Estimation and Correlation with Chemical Structure, 3rd ed.; Elsevier: Amsterdam, 1990. Chapter 20.
  • (a) Benson, S. W. Thermochemical Kinetics. Methods for Estimation of Thermochemical Data and Rate Parameters; J. Wiley & Sons: New York, 1968. (b) Cohen, N.; Benson, S. W. Estimation of Heats of Formation of Organic Compounds by Additivity Methods. Chem. Rev. 1993, 93, 2419–2438.
  • Cataldo, F. On The Enthalpy of Formation of the Most Known Carbon Allotropes. Fullerenes, Nanot. Carbon Nanostruct. 1997, 5, 1615–1620.
  • Cataldo, F. On the Solubility Parameter of C60 and Higher Fullerenes. Fullerenes Nanot. Carbon Nanostruct. 2009, 17, 79–84.
  • Cataldo, F.; Ursini, O.; Angelini, G. Biodiesel as a Plasticizer of a sbr-based Tire Tread Formulation. ISRN Polymer Science 2013. Article ID 340426.
  • Cataldo, F. Solubility of Fullerenes in Fatty Acids Esters: a New Way to Deliver in Vivo Fullerenes. Theoretical Calculations and Experimental Results. In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Springer: Netherlands, 2008; pp. 317–335
  • Cataldo, F. Thermochemistry of Ozonides Decomposition. Eur. Chem. Bull. 2014, 3, 227–233.
  • Cataldo, F. Polyynes Formation from Electric Arc in Liquid Argon in Presence Of Methane. Fullerenes Nanot. Carbon Nanostruct. 2007, 15, 291–301.
  • Cataldo, F.; Garcia-Hernandez, D. A.; Manchado, A.; Kwok, S. Laboratory Study of Carbonaceous Dust and Molecules of Astrochemical Interest. J. Phys. Confer. Series 2016, 728, 10. article id. 062002.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Chemical Thermodynamics Applied to the Diels–Alder Reaction Of C60 Fullerene with Polyacenes. Fullerenes Nanot. Carbon Nanostruct. 2015, 23, 760–768.
  • (a) Heimann, R.B.; Evsvukov, S.E.; Koga, Y. Carbon Allotropes: A Suggested Classification Scheme Based on Valence Orbital Hybridization. Carbon 1997, 35, 1654–1658. (b) Enyashin, Andrey N.; Ivanovskii, Alexander L. Graphene Allotropes. Phys. Status Solidi B 2011, 248, 1879–1883.
  • Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure‐Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and Sp atoms. J. Chem. Phys. 1987, 87, 6687–6699.
  • Bai, H.; Zhu, Y.; Qiao, W.; Huang, Y. Structures, Stabilities and Electronic Properties of Graphdiyne Nanoribbons. RSC Advances 2011, 1, 768–775.
  • Karton, A.; Chan, B.; Raghavachari, K.; Radom, L. Evaluation of the Heats of Formation of Corannulene and C60 by means of high-level theoretical procedures. J. Phys. Chem. A 2013, 117, 1834–1842. Dobek, F. J.; Ranasinghe, D. S.; Throssell, K.; Petersson, G. A. Evaluation of the Heats of Formation of Corannulene and C60 by Means of Inexpensive Theoretical Procedures. J. Phys. Chem. A 2013, 117, 4726–4730.
  • Wheeler, S. E.; Houk, K. N.; Schleyer, P. V. R.; Allen, W. D. A Hierarchy of Homodesmotic Reactions for Thermochemistry. J. Amer. Chem. Soc. 2009, 131, 2547–2560.
  • (a) Toyota, S.; Goichi, M.; Kotani, M.; Takezaki, M. Chemistry of Anthracene–Acetylene Oligomers. ii. Synthesis, Structure, and Properties of 1, 8-Anthrylene–Ethynylene Cyclic Tetramers and Related Acyclic Oligomers. Bull. Chem. Soc. Japan 2005, 78, 2214–2227. (b) Toyota, S.; Miyahara, H.; Goichi, M.; Wakamatsu, K.; Iwanaga, T. Chemistry of Anthracene–Acetylene Oligomers. X. Synthesis, Structures, and Properties of 1, 8-Anthrylene–Alkynylene Cyclic Trimers. Bull. Chem. Soc. Japan 2008, 81, 1147–1157. (c) Toyota, S.; Harada, H.; Miyahara, H.; Kawakami, T.; Wakamatsu, K.; Iwanaga, T. Chemistry of Anthracene–Acetylene Oligomers. xix. Construction of Higher 1, 8-Anthrylene–Alkynylene Macrocycles: Synthesis, Structures, and Conformational Analysis of Cyclic Hexamer and Dodecamer. Bull. Chem. Soc. Japan 2011, 84, 829–838.
  • (a) Dias, J. R. Handbook of Polycyclic Hydrocarbons. Part A: Benzenoid Hydrocarbons; Elsevier: Amsterdam, 1987. (b) Dias, J. R. Handbook of Polycyclic Hydrocarbons. Part B: Polycyclic Isomers and Heteroatom Analogs of Benzenoid Hydrocarbons; Elsevier: Amsterdam, 1988. (c) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-VCH: New York, 1997.
  • Cataldo, F. The Impact of a Fullerene-Like Concept in Carbon Black Science. Carbon 2002, 40, 157–162.
  • (i) Fetzer, J. C. Large (C>24) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis; John Wiley & Sons: New York, 2000. (b) Fetzer, J. C. The Chemistry and Analysis of Large PAHs. Polycyclic Arom. Comp. 2007, 27, 143–162.
  • (a) Bittner, J. D.; Howard, J. B.; Palmer, H. B. Chemistry of Intermediate Species in the Rich Combustion of Benzene. In: Soot in Combustion Systems and its Toxic Properties; Lahayl, J., Prado, G. (eds.); Plenum Press: New York, NY, 1983; pp.95–125. (b) Bockhorn, H. (ed). Soot Formation in Combustion, Mechanisms and Models; Springer Verlag: Berlin. 1994. (c) Richter, H.; Howard, J. B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways. Progr. Energy Combust. Sci. 2000, 26, 565–608. (d) Krestinin, A. V. Detailed Modeling of Soot Formation in Hydrocarbon Pyrolysis. Combust. Flame 2000, 121, 513–524. (e) Fialkov, A. B.; Dennebaum, J.; Homann, K. H. Large Molecules, Ions, Radicals, and Small Soot Particles in Fuel-Rich Hydrocarbon Flames Part V: Positive Ions of Polycyclic Aromatic Hydrocarbons (Pah) In Low-Pressure Premixed Flames of Benzene And Oxygen. Combust. Flame 2001, 125, 763–777.
  • Cataldo, F.; Anibal García-Hernández, D. A.; Manchado, A. Submerged Carbon Arc in Liquid Benzene: Gc-Ms Analysis of the Products. Fullerenes Nanot. Carbon Nanostruct. 2017, 25, 576–584.
  • Putz M. V.; Ori O.; Cataldo F.; Putz A. M. Parabolic Reactivity “Coloring” Molecular Topology: Application to Carcinogenic PAHs. Curr. Org. Chem. 2013, 17, 2816–2830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.