416
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Graphene/Gold nanoparticle composite-based paper sensor for electrochemical detection of hydrogen peroxide

, , &
Pages 23-27 | Received 11 May 2018, Accepted 18 May 2018, Published online: 25 Dec 2018

References

  • Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. (2012) A roadmap for graphene. Nature, 490: 192–200.
  • Li, M., Tang, Z., Leng, M., and Xue, J. (2014) Flexible solid-state supercapacitor based on graphene-based hybrid films. Adv. Funct. Mater., 24: 7495–7502.
  • Kakaei, K. and Balavandi, A. (2016) Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J. Colloid Interf. Sci., 463: 46–54.
  • Sun, H., Xu, Z., and Gao, C. (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater., 25: 2554–2560.
  • Chen, W., Cai, S., Ren, Q. Q., Wen, W., and Zhao, Y. D. (2012) Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst, 137: 49–58.
  • Zheng, D. Y., Hu, H., Liu, X. J., and Hu, S. S. (2015) Application of graphene in electrochemical sensing. Curr. Opin. Colloid Interface Sci., 20: 383–405.
  • Xie, R. B., Wang, Z. F., Zhou, W., Liu, Y. T., Fan, L. Z., Li, Y. C., and Li, X. H. (2016) Graphene quantum dots as smart probes for biosensing. Anal. Meth., 8: 4001–4016.
  • Tiwari, J. N., Vij, V., Kemp, K. C., and Kim, K. S. (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano, 10: 46–80.
  • Wang, T., Huang, D., Yang, Z., Xu, S. S., He, G. L., Li, X. L., Hu, N. T., Yin, G. L., He, D. N., and Zhang, L. Y. (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett., 8: 95–119.
  • Chang, J., Zhou, G., Christensen, E. R., Heideman, R., and Chen, J. (2014) Graphene-based sensors for detection of heavy metals in water: A review. Anal. Bioanal. Chem., 406: 3957–3975.
  • Yang, Y. J. and Li, W. K. (2018). Gold nanoparticles/graphene oxide composite for electrochemical sensing of hydroxylamine and hydrogen peroxide. Fuller. Nanotub. Carbon Nanostruct., 26: 195–204.
  • Liu, R. J., Li, S. W., Yu, X. L., Zhang, G. J., Zhang, S. J., Yao, J. N., Keita, B., Nadjo, L., and Zhi, L. J. (2012) Facile synthesis of Au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: An enzyme-free electrochemical biosensor for hydrogen peroxide. Small, 8: 1398–1406.
  • Ju, J. and Chen, W. (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem., 87: 1903–1910.
  • Jiang, L. and Fan, Z. (2014) Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures. Nanoscale, 6: 1922–1945.
  • Ji, L. W., Meduri, P., Agubra, V., Xiao, X. C., and Alcoutlabi, M. (2016) Graphene-based nanocomposites for energy storage. Adv. Energy Mater., 6: 1502159.
  • Shen, Y., Fang, Q. L., and Chen, B. L. (2015) Environmental applications of three-dimensional graphene-based macrostructures: Adsorption, transformation, and detection. Environ. Sci. Technol., 49: 67–84.
  • Cheng, Y., Fan, Y. Q., Pei, Y., and Qiao, M. H. (2015) Graphene-supported metal/metal oxide nanohybrids: Synthesis and applications in heterogeneous catalysis. Catal. Sci. Technol., 5: 3903–3916.
  • Chen, L., Wang, X., Zhang, X., and Zhang, H. (2012) 3D porous and redox-active Prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. J. Mater. Chem., 22: 22090–22096.
  • Zhang, J. J., Li, R. Y., Li, Z. J., Liu, J. K., Gu, Z. G., and Wang, G. L. (2014) Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and O-dihydroxybenzene. Nanoscale, 6: 5458–5466.
  • Li, R. Y., Liu, L., Bei, H. X., and Li, Z. J. (2016) Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum. Biosens. Bioelectron., 79: 457–466.
  • Xiao, F., Li, Y. Q., Gao, H. C., Ge, S. B., and Duan, H. W. (2013) Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens. Bioelectron., 41: 417–423.
  • Zhang, M., Halder, A., Hou, C., Ulstrup, J., and Chi, Q. (2016) Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry, 109: 87–94.
  • Cai, Z. X., Song, X. H., Chen, Y. Y., Wang, Y. R., and Chen, X. (2016) 3D nitrogen-doped graphene aerogel: A low-cost, facile prepared direct electrode for H2O2 sensing. Sensor Actuat. B-Chem., 222: 567–573.
  • Lu, X., Liu, X. L., Shen, T., Qin, Y. J., Zhang, P., Luo, H. X., and Guo, Z. X. (2017) Convenient fabrication of graphene/gold nanoparticle aerogel as direct electrode for H2O2 sensing. Mater. Lett., 207: 49–52.
  • Ammu, S., Dua, V., Agnihotra, S. R., Surwade, S. P., Phulgirkar, A., Patel, S., and Manohar, S. K. (2012) Flexible, all-organic chemiresistor for detecting chemically aggressive vapors. J. Am. Chem. Soc., 134: 4553–4556.
  • Wang, J., Zhang, X. Y., Huang, X. P., Wang, S. J., Qian, Q. P., Du, W. B., and Wang, Y. P. (2013) Forced assembly of water-dispersible carbon nanotubes trapped in paper for cheap gas sensors. Small, 9: 3759–3764.
  • Shobin, L. R. and Manivannan, S. (2015). Carbon nanotubes on paper: Flexible and disposable chemiresistors. Sensor Actuat. B-Chem., 220: 1178–1185.
  • Dou, X. W., Wang, J., Lu, X., Zhang, M. M., Qin, Y. J., Wang, Y. P., Zhang, P., and Guo, Z. X. (2016) A convenient approach to producing a sensitive MWCNT-based paper sensor. RSC Adv., 6: 112241–112245.
  • Panraksa, Y., Siangproh, W., Khampieng, T., Chailapakul, O., and Apilux, A. (2018) Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode. Talanta, 178: 1017–1023.
  • Chaiyo, S., Mehmeti, E., Siangproh, W., Hoang, T. L., Nguyen, H. P., Chailapakul, O., and Kalcher, K. (2018) Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine ionic liquid graphene composite. Biosens. Bioelectron., 102: 113–120.
  • Sui, Z.-Y., Cui, Y., Zhu, J.-H., and Han, B.-H. (2013) Preparation of three-dimensional graphene oxide–polyethylenimine porous materials as dye and gas adsorbents. ACS Appl. Mater. Interfaces, 5: 9172–9179.
  • Zhang, X. T., Sui, Z. Y., Xu, B., Yue, S. F., Luo, Y. J., Zhan, W. C., and Liu, B. (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem., 21: 6494–6497.
  • Zhang, J. L., Yang, H. J., Shen, G. X., Cheng, P., Zhang, J. Y., and Guo, S. W. (2010) Reduction of graphene oxide via L-ascorbic acid. Chem. Commun., 46: 1112–1114.
  • Mutyala, S. and Mathiyarasu, J. (2016) A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode. Mater. Sci. Eng. C-Mater. Biol. Appl., 69: 398–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.