363
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

The synthesis and electrochemical performance of NiCo2O4 embedded carbon nanofibers for high-performance supercapacitors

&
Pages 189-197 | Received 01 Sep 2018, Accepted 17 Oct 2018, Published online: 28 Dec 2018

References

  • Wang, Q.;Yan, J.; Fan, Z. Carbon Materials for High Volumetric Performance Supercapacitors: Design, Progress, Challenges and Opportunities. Energy Environ. Sci. 2016, 9, 729–762.
  • Zhou, D.; Lin, H.; Zhang, F.; Niu, H.; Cui, L.; Wang, Q.; Qu, F. Freestanding MnO2 Nanoflakes/Porous Carbon Nanofibers for High-Performance Flexible Supercapacitor Electrodes. Electrochim. Acta. 2015, 161, 427–435.
  • Lin, Z.; Taberna, P.-L.; Simon, P. Graphene-Based Supercapacitors Using Eutectic Ionic Liquid Mixture Electrolyte. Electrochim. Acta. 2016, 206, 446–451.
  • Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Acc. Chem. Res. 2013, 46, 1094–1103.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854.
  • Zhang, L. L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.
  • Wang, G.; Zhang, L.; Zhang, J. A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.
  • Chen, L. -F.; Huang, Z.-H.; Liang, H.-W.; Guan, Q.-F.; Yu, S.-H. Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density. Adv. Mater. 2013, 25, 4746–4752.
  • Faraji, S.; Ani, F. N. Microwave-Assisted Synthesis of Metal Oxide/Hydroxide Composite Electrodes for High Power Supercapacitors - A Review. J. Power Sources. 2014, 263, 338–360.
  • Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.
  • Zhao, Y.; Liu, M.; Deng, X.; Miao, L.; Tripathi, P. K.; Ma, X.; Zhu, D.; Xu, Z.; Hao, Z.; Gan, L. Nitrogen-Functionalized Microporous Carbon Nanoparticles for High Performance Supercapacitor Electrode. Electrochim. Acta 2015, 153, 448–455.
  • Wu, Z.; Pu, X.; Ji, X.; Zhu, Y.; Jing, M.; Chen, Q.; Jiao, F. High Energy Density Asymmetric Supercapacitors from Mesoporous NiCo2S4 Nanosheets. Electrochim. Acta 2015, 174, 238–245.
  • Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano. 2012, 6, 7092–7102.
  • Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Yao, W.-T.; Yu, Z.-Y.; Yu, S.-H. Flexible All-Solid-State High-Power Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Bacterial Cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.
  • Zhou, D.-D.; Li, W.-Y.; Dong, X.-L.; Wang, Y.-G.; Wang, C.-X.; Xia, Y.-Y. A Nitrogen-Doped Ordered Mesoporous Carbon Nanofiber Array for Supercapacitors. J. Mater. Chem. A. 2013, 1, 8488–8496.
  • Yang, Y.; Hou, X.; Ding, C.; Lan, J.-L.; Yu, Y.; Yang, X. Eco-friendly fabricated nonporous carbon nanofibers with high volumetric capacitance: Improving rate performance by tri-dopants of nitrogen, phosphorus, and silicon. Inorg. Chem. Front. 2017, 4, 2024–2032.
  • Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.
  • Conway, B. E.; Birss, V.; Wojtowicz, J. The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. J. Power Sources 1997, 66, 1–14.
  • Yuan, C.; Wu, H.B.; Xie, Y.; Lou, X. W. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angew. Chem.-Int. Ed. 2014, 53, 1488–1504.
  • Wang, Y.; Xia, Y. Recent Progress in Supercapacitors: From Materials Design to System Construction. Adv. Mater. 2013, 25, 5336–5342.
  • Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials. Adv. Funct. Mater. 2014, 24, 934–942.
  • Wang, H.; Fu, Y.; Wang, X.; Gao, J.; Zhang, Y.; Zhao, Q. Preparation and Performance of Tubular Nanoflaky (Ni, Co, Mn) Oxides with Hierarchical Mesoporous Structure. J. Alloys Compd. 2015, 639, 352–358.
  • Jiang, W.; Yu, D.; Zhang, Q.; Goh, K.; Wei, L.; Yong, Y.; Jiang, R.; Wei, J.; Chen, Y. Ternary Hybrids of Amorphous Nickel Hydroxide-Carbon Nanotube-Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Adv. Funct. Mater. 2015, 25, 1063–1073.
  • Ma, R.; Liu, X.; Liang, J.; Bando, Y.; Sasaki, T. Molecular-Scale Heteroassembly of Redoxable Hydroxide Nanosheets and Conductive Graphene into Superlattice Composites for High-Performance Supercapacitors. Adv. Mater. 2014, 26, 4173–4178.
  • Salunkhe, R. R.; Lin, J.; Malgras, V.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Large-Scale Synthesis of Coaxial Carbon Nanotube/Ni(OH)(2) Composites for Asymmetric Supercapacitor Application. Nano Energ. 2015, 11, 211–218.
  • Wei, B.; Wang, L.; Miao, Q.; Yuan, Y.; Dong, P.; Vajtai, R.; Fei, W. Fabrication of Manganese Oxide/Three-Dimensional Reduced Graphene Oxide Composites as the Supercapacitors by a Reverse Microemulsion Method. Carbon. 2015, 85, 249–260.
  • Jiang, Y.; Wang, P.; Zang, X.; Yang, Y.; Kozinda, A.; Lin, L. Uniformly Embedded Metal Oxide Nanoparticles in Vertically Aligned Carbon Nanotube Forests as Pseudocapacitor Electrodes for Enhanced Energy Storage. Nano Lett. 2013, 13, 3524–3530.
  • Chen, L.-F.; Yu, Z.-Y.; Wang, J.-J.; Li, Q.-X.; Tan, Z.-Q.; Zhu, Y.-W.; Yu, S.-H. Metal-Like Fluorine-Doped Beta-FeOOH Nanorods Grown on Carbon Cloth for Scalable High-Performance Supercapacitors. Nano Energ. 2015, 11, 119–128.
  • Zhao, Y.; Ran, W.; He, J.; Huang, Y.; Liu, Z.; Liu, W.; Tang, Y.; Zhang, L.; Gao, D.; Gao, F. High-Performance Asymmetric Supercapacitors Based on Multilayer MnO2/Graphene Oxide Nanoflakes and Hierarchical Porous Carbon with Enhanced Cycling Stability. Small. 2015, 11, 1310–1319.
  • Wang, Q.; Yan, J.; Xiao, Y.; Wei, T.; Fan, Z.; Zhang, M.; Jing, X. Interconnected Porous and Nitrogen-Doped Carbon Network for Supercapacitors with High Rate Capability and Energy Density. Electrochim. Acta. 2013, 114, 165–172.
  • Abouali, S.; Garakani, M. A.; Zhang, B.; Xu, Z.-L.; Heidari, E. K.; Huang, J.-q.; Huang, J.; Kim, J.-K. Electrospun Carbon Nanofibers with in Situ Encapsulated Co3O4 Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Appl. Mat. Interfaces. 2015, 7, 13503–13511.
  • Jin, Y.; Yuan, H.; Lan, J.-L.; Yu, Y.; Lin, Y.-H.; Yang, X. Bio-inspired Spider-Web-Like Membranes with a Hierarchical Structure for High Performance Lithium/Sodium Ion Battery Electrodes: The Case of 3D Freestanding and Binder-Free Bismuth/CNF Anodes. Nanoscale. 2017, 9, 13298–13304.
  • Hou, D.; Luo, W.; Huang, Y.; Yu, J.C.; Hu, X. Synthesis of Porous Bi4Ti3O12 Nanofibers by Electrospinning and their Enhanced Visible-Light-Driven Photocatalytic Properties. Nanoscale. 2013, 5, 2028–2035.
  • Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Selective Isolation of the Electron or Hole in Photocatalysis: ZnO-TiO2 and TiO2-ZnO ZnO Core-Shell Structured Heterojunction Nanofibers via Electrospinning and Atomic Layer Depositiont. Nanoscale. 2014, 6, 5735–5745.
  • Yang, T.; Li, Y.; Chan, C. K. Enhanced Lithium Ion Conductivity in Lithium Lanthanum Titanate Solid Electrolyte Nanowires Prepared by Electrospinning. J. Power Sources. 2015, 287, 164–169.
  • Zhao, Y.; Li, X.; Dong, L.; Yan, B.; Shan, H.; Li, D.; Sun, X. Electrospun SnO2-ZnO Nanofibers with Improved Electrochemical Performance as Anode Materials for Lithium-Ion Batteries. Int. J. Hydrogen Energy. 2015, 40, 14338–14344.
  • Guo, Y.; Zheng, L.; Lan, J.-L.; Yu, Y.; Yang, X. MnO Nanoparticles Encapsulated in Carbon Nanofibers with Sufficient Buffer Space for High-Performance Lithium-Ion Batteries. Electrochim. Acta. 2018, 269, 624–631.
  • Fei, L.; Hu, Y.; Li, X.; Song, R.; Sun, L.; Huang, H.; Gu, H.; Chan, H.L.W.; Wang, Y. Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. ACS Appl. Mat. Interfaces. 2015, 7, 3665–3670.
  • Kim, T.; Yang, S. J.; Sung, S. J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, C. R. Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices. ACS Appl. Mat. Interfaces. 2015, 7, 4481–4487.
  • Miao, F.; Shao, C.; Li, X.; Wang, K.; Liu, Y. Flexible Solid-State Supercapacitors Based on Freestanding Nitrogen-Doped Porous Carbon Nanofibers Derived from Electrospun Polyacrylonitrile@Polyaniline Nanofibers. J. Mater. Chem. A. 2016, 4, 4180–4187.
  • Tian, X.; Zhao, N.; Song, Y.; Wang, K.; Xu, D.; Li, X.; Guo, Q.; Liu, L. Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers with Superior Performance as Efficient Supercapacitor Electrodes in Alkaline Solution. Electrochim. Acta. 2015, 185, 40–51.
  • Kolathodi, M. S.; Palei, M.; Natarajan, T. S. Electrospun NiO Nanofibers as Cathode Materials for High Performance Asymmetric Supercapacitors. J. Mater. Chem. A. 2015, 3, 7513–7522.
  • Yang, J. E.; Jang, I.; Kim, M.; Baeck, S. H.; Hwang, S.; Shim, S. E. Electrochemically Polymerized Vine-Like Nanostructured Polyaniline on Activated Carbon Nanofibers for Supercapacitor. Electrochim. Acta. 2013, 111, 136–143.
  • Ning, P.; Duan, X.; Ju, X.; Lin, X.; Tong, X.; Pan, X.; Wang, T.; Li, Q. Facile Synthesis of Carbon Nanofibers/MnO2 Nanosheets as High-Performance Electrodes for Asymmetric Supercapacitors. Electrochim. Acta. 2016, 210, 754–761.
  • Zhang, F.; Yuan, C.; Zhu, J.; Wang, J.; Zhang, X.; Lou, X. W. Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co3O4 Hollow Nanoparticles as Self-Supported Electrodes for Electrochemical Capacitors. Adv. Funct. Mater. 2013, 23, 3909–3915.
  • Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G. R. NiCo2O4/rGO hybrid Nanostructures for Efficient Electrocatalytic Oxygen Evolution. J. Solid State Electrochem. 2016, 20, 2725–2736.
  • Tong, X.; Chen, S.; Guo, C.; Xia, X.; Guo, X.-Y. Mesoporous NiCo2O4 Nanoplates on Three-Dimensional Graphene Foam as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ACS Appl. Mat. Interfaces. 2016, 8, 28274–28282.
  • Liu, D.; Zeng, C.; Qu, D.; Tang, H.; Li, Y.; Su, B.-L.; Qu, D. Highly Efficient Synthesis of Ordered Nitrogen-Doped Mesoporous Carbons with Tunable Properties and its Application in High Performance Supercapacitors. J. Power Sources 2016, 321, 143–154.
  • Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano. 2015, 9, 2556–2564.
  • Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Adv. Funct. Mater. 2012, 22, 2632–2641.
  • Abouali, S.; Garakani, M.A.; Xu, Z.-L.; Kim, J.-K. NiCo2O4/CNT Nanocomposites as Bi-functional Electrodes for Li ion Batteries and Supercapacitors. Carbon. 2016, 102, 262–272.
  • Umeshbabu, E.; Rajeshkhanna, G.; Rao, G. R. Urchin and Sheaf-like NiCo2O4 Nanostructures: Synthesis and Electrochemical Energy Storage Application. Int. J. Hydrogen Energy. 2014, 39, 15627–15638.
  • Kuang, M.; Zhang, Y. X.; Li, T. T.; Li, K. F.; Zhang, S. M.; Li, G.; Zhang, W. Tunable Synthesis of Hierarchical NiCo2O4 Nanosheets-Decorated Cu/CuOx Nanowires Architectures for Asymmetric Electrochemical Capacitors. J. Power Sources. 2015, 283, 270–278.
  • Yue, S.; Tong, H.; Lu, L.; Tang, W.; Bai, W.; Jin, F.; Han, Q.; He, J.; Liu, J.; Zhang, X. Hierarchical NiCo2O4 Nanosheets/Nitrogen Doped Graphene/Carbon Nanotube Film with Ultrahigh Capacitance and Long Cycle Stability as a Flexible Binder-Free Electrode for Supercapacitors. J. Mater. Chemistry A. 2017, 5, 689–698.
  • Kumbhar, V. S.; Jagadale, A. D.; Shinde, N. M.; Lokhande, C. D. Chemical Synthesis of Spinel Cobalt Ferrite (CoFe2O4) Nano-Flakes for Supercapacitor Application. Appl. Surf. Sci. 2012, 259, 39–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.