266
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

One-pot functionalization of carbon nanotubes by WO3/MoO3 nanoparticles as oxidative desulfurization catalysts

&
Pages 198-205 | Received 03 Oct 2018, Accepted 15 Oct 2018, Published online: 29 Dec 2018

References

  • Zhang, G.; Yu, F.; Wang, R. Research and Advances in Oxidative Desulfurization Technologies for the Production of Low Sulfur Fuel Oils. Petrol. Coal 2009, 51, 96–207.
  • Ma, X.; Zhou, A.; Song, Ch. A Novel Method for Oxidative Desulfurization of Liquid Hydrocarbon Fuels Based on Catalytic Oxidation Using Molecular Oxygen Coupled with Selective Adsorption. Catal. Today 2007, 123, 276–284. DOI: 10.1016/j.cattod.2007.02.036.
  • De Souza, W. F.; Guimaraes, I.; Guerreiro, M. C.; Oliveira, L. C. A. Catalytic Oxidation of Sulfur and Nitrogen Compounds from Diesel Fuel. Appl. Catal. A: Gen. 2009, 360, 205–209. DOI: 10.1016/j.apcata.2009.03.023.
  • Song C. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel. Catal. Today. 2003, 86, 211–263. DOI: 10.1016/S0920-5861(03)00412-7.
  • Srivastava, V.Ch. An Evaluation of Desulfurization Technologies for Sulfur Removal from Liquid Fuels. RSC Adv. 2012, 2, 759–783. DOI: 10.1039/C1RA00309G.
  • MuÞic, M.; Sertiae-Bionda, K. Alternative Processes for Removing Organic Sulfur Compounds from Petroleum Fractions. Chem. Biochem. Eng. Q. 2013, 27, 101–108.
  • Gawande, P. R.; Kaware, J. P. A Review on Desulphurization of Liquid Fuel by Adsorption. Int. J. Sci. Res. 2014, 7, 2255–2259.
  • Kim, J. H.; Ma, X.; Zhou, A.; Song, Ch. Ultra-Deep Desulfurization and Denitrogenation of Diesel Fuel by Selective Adsorption Over Three Different Adsorbents: A Study on Adsorptive Selectivity and Mechanism. Catal. Today. 2006, 111, 74–83. DOI: 10.1016/j.cattod.2005.10.017.
  • Campos-Martin, J.M.; Capel-Sanchez, M. C.; Perez-Presas, P.; Fierro, J. L. G. Oxidative Processec of Desulfurization of Liquid Fuels. J. Chem. Tech. Biotech. 2010, 85, 879–890. DOI: 10.1002/jctb.2371.
  • Mjalli, F. S.; Ahmed, O. U.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I. M. Deep Oxidative Desulfurization of Liquid Fuels. Rev. Chem. Eng. 2014, 30, 337–378. DOI: 10.1515/revce-2014-0001.
  • Zhua, W. Sh.; Li, H.; Gua, Q. Q.; Wua, P.; Zhua, G.; Yana, Y.; Chen, G. Kinetics and Mechanism for Oxidative Desulfurization of Fuels Catalyzed by Peroxo-Molybdenum Amino Acid Complexes in Water-Immiscible Ionic Liquids. J. Mol. Catal. A: Chem. 2011, 336, 16–22. DOI: 10.1016/j.molcata.2010.12.003.
  • Prasad, V. V. D. N.; Jeong, K. E.; Chae, H. J.; Kim, C. U.; Jeong, S. Y. Oxidative Desulfurization of 4,6-Dimethyl Dibenzothiophene and Light Cycle Oil Over Supported Molybdenum Oxide Catalysts. Catal. Commun. 2008, 9, 1966–1969. DOI: 10.1016/j.catcom.2008.03.021.
  • Herbert, M.; lvarez, E.; Cole-Hamilton, D. J.; Montilla, F.; Galindo, A. Olefin Epoxidation by Hydrogen Peroxide Catalysed by Molybdenum Complexes in Ionic Liquids and Structural Characterisation of the Proposed Intermediate Dioxoperoxomolybdenum Species. Chem. Commun. 2010, 46, 5933–5935. DOI: 10.1039/C0CC00462F.
  • Zhu, W.; Li, H.; Jiang, X.; Yan, Y.; Lu, J.; Xia, J. Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten and Peroxomolybdenum Complexes in Ionic Liquids. Energy Fuel. 2007, 21, 2514–2516. DOI: 10.1021/ef700310r.
  • Tian, Y.; Yao, Y.; Zhi, Y.; Yan, L.; Lu, Sh. Combined Extraction–Oxidation System for Oxidative Desulfurization (ODS) of a Model Fuel. Energy Fuel. 2015, 29, 618–625. DOI: 10.1021/ef502396b.
  • Garcia-Gutierrez, J. L.; Fuentes, G. A.; Hernández-Terán, M. E.; Garcia, P.; Murrieta-Guevara, F.; Jiménez-Cruz, F. Ultra-Deep Oxidative Desulfurization of Diesel Fuel by the Mo/Al2O3-H2O2 System: The Effect of System Parameters on Catalytic Activity. Appl. Catal. A: Gen. 2008, 334, 366–373. DOI: 10.1016/j.apcata.2007.10.024.
  • De Filippis, P.; Scarsella, M. Functionalized Hexagonal Mesoporous Silica as an Oxidizing Agent for the Oxidative Desulfurization of Organosulfur Compounds. Ind. Eng. Chem. Res. 2008, 47, 973–975. DOI: 10.1021/ie071057y.
  • Haw, K. G.; Bakar, W. A. W. A.; Ali, R.; Chong, J. F.; Kadir, A. A. A. Catalytic Oxidative Desulfurization of Diesel Utilizing Hydrogen Peroxide and Functionalized Activated Carbon in a Biphasic Diesel–Acetonitrile System. Fuel Process. Technol. 2010, 91, 1105–1112. DOI: 10.1016/j.fuproc.2010.03.021.
  • Afsharpour, M.; Rostami Amraee, A. Synthesis of Bio-inspired N-doped SiC and Investigation of its Synergetic Effects on Mo Catalysts in Oxidative Desulfurization Reaction. Mol. Catal. 2017, 436, 285–293. DOI: 10.1016/j.mcat.2017.04.029.
  • Khomand, E.; Afsharpour, M. Green Synthesis of SiCs by using Natural Gums (Guar, Tragacanth, Arabic, and Xanthan) for Desulfurization of Model Fuel. Int. J. Environ. Sci. Technol. In Press 2019. 16, DOI: 10.1007/s13762-018-1678-y.
  • Zhang, W.; Zhang, H.; Xiao, J.; Zhao, Z.; Yu, M.; Li, Z. Carbon Nanotube Catalysts for Oxidative Desulfurization of a Model Diesel Fuel Using Molecular Oxygen. Green Chem. 2014, 16, 211–220. DOI: 10.1039/C3GC41106K.
  • Piccinino, D.; Abdalghani, I.; Botta, G.; Crucianelli, M.; Passacantando, M.; Di Vacri, M. L.; Saladino, R. Preparation of Wrapped Carbon Nanotubes Poly(4-vinylpyridine)/MTO Based Heterogeneous Catalysts for the Oxidative Desulfurization (ODS) of Model and Synthetic Diesel Fuel. Appl. Catal. B: Environ. 2017, 200, 392–401. DOI: 10.1016/j.apcatb.2016.07.037.
  • Monthioux, M.; Kuznetsov, V. L. Who Should Be Given the Credit for the Discovery of Carbon Nanotubes? Carbon. 2006, 44, 1621–1623. DOI: 10.1016/j.carbon.2006.03.019.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. DOI: 10.1021/cr050569o.
  • Ugarte, D.; Chatelain, A.; de Heer, W. A. Nanocapillarity and Chemistry in Carbon Nanotubes. Science. 1996, 274, 1897–1899. DOI: 10.1126/science.274.5294.1897.
  • Yang, Ch.; Wang, D.; Hu, X.; Dai, Ch.; Zhang, L. Preparation and Characterization of Multi-Walled Carbon Nanotube (MWCNTs)-Supported Pt-Ru Catalyst for Methanol Electrooxidation. J. Alloy. Comp. 2008, 448, 109–115. DOI: 10.1016/j.jallcom.2006.10.030.
  • Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc. 1994, 116, 7935–7936. DOI: 10.1021/ja00096a076.
  • Lordi, V.; Yao, N.; Wei, J. Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst. Chem. Mater. 2001, 13, 733–737. DOI: 10.1021/cm000210a.
  • Giordano, R.; Serp, P.; Kalck, P.; Kihn, Y.; Schreiber, J.; Marhic, C. Preparation of Rhodium Catalysts Supported on Carbon Nanotubes by a Surface Mediated Organometallic Reaction. Eur. J. Inorg. Chem. 2003, 4, 610–617. DOI: 10.1002/ejic.200390083.
  • Zhbanov, A. I.; Sinitsyn, N. I.; Torgashov, G. V. Nanoelectronic Devices Based on Carbon Nanotubes. Radiophys. Quantum Elect. 2004, 47, 435–452. DOI: 10.1023/B:RAQE.0000046318.53459.6e.
  • Kong, J.; Franklin, N. R.; Zhou, C. W. Nanotube Molecular Wires as Chemical Sensors. Science. 2000, 287, 622–625. DOI: 10.1126/science.287.5453.622.
  • Liu, C.; Fan, Y. Y.; Liu, M. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science. 1999, 286, 1127–1129. DOI: 10.1126/science.286.5442.1127.
  • Sharif Zein, Sh. H.; Yeoh, L.Ch.; Chai, S. P.; Mohamed, A. R.; Mahayuddin, M. E. Synthesis of Manganese Oxide/Carbon Nanotube Nanocomposites Using Wet Chemical Method. J. Mater. Process. Tech. 2007, 190, 402–405. DOI: 10.1016/j.jmatprotec.2007.03.104.
  • Matsui, K.; Pradhan, B. K.; Kyotani, T.; Tomita, A. Formation of Nickel Oxide Nanoribbons in the Cavity of Carbon Nanotubes. J. Phys. Chem. B. 2001, 105, 5682–5688. DOI: 10.1021/jp010496m.
  • Ugarte, D.; Stöckli, T.; Bonard, J. M.; Châtelain, A.; de Heer, W. A. Filling Carbon Nanotubes. Appl. Phys. A. 1998, 67, 101–105. DOI: 10.1007/s003390050744.
  • Chen, Y.; Haddon, R. C.; Fang, S. Chemical Attachment of Organic Functional Groups to Single-Walled Carbon Nanotube Material. J. Mater. Res. 1998, 13, 2423–2431. DOI: 10.1557/JMR.1998.0337.
  • Liu, J. Q.; Xiao, T.; Liao, K.; Wu, P. Interfacial Design of Carbon Nanotube Polymer Composites: A Hybrid System of Noncovalent and Covalent Functionalizations. Nanotechnol. 2007, 18, 165701. DOI: 10.1088/0957-4484/18/16/165701.
  • Dujardin, E.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K. Capillarity and Wetting of Carbon Nanotubes. Science 1994, 265, 1850–1852. DOI: 10.1126/science.265.5180.1850.
  • Pérez-Cadenas, A. F.; Moreno-Castilla, C.; Maldonado-Hódar, F. J.; Fierro, J. L. G. Tungsten Oxide Catalysts Supported on Activated Carbons: Effect of Tungsten Precursor and Pretreatment on Dispersion, Distribution, and Surface Acidity of Catalysts. J. Catal. 2003, 217, 30–37. DOI: 10.1016/S0021-9517(03)00059-9.
  • Afsharpour, M.; Mahjoub, A. R.; Amini, M. M. Synthesis, Characterization and Catalytic Activity of New Peroxomolybdenum(VI) Complex-Based Coordination Polymer. Appl. Catal. A. 2007, 327, 205–210. DOI: 10.1016/j.apcata.2007.05.013.
  • Afsharpour, M.; Mahjoub, A. R.; Amini, M. M.; Khodadadi, A. A.; Organization of Molybdenum Oxide Nanohybrids by Intercalation of Aminohydroxy Ligands into Layered Molybdic Acid: Efficient Catalysts in Oxidation of Alcohols. Current Nanosci. 2010, 6, 82–88. DOI: 10.2174/157341310790226261.
  • Kamata, K.; Yonehara, K.; Sumida, Y.; Hirata, K.; Nojima, S.; Mizuno, N. Efficient Heterogeneous Epoxidation of Alkenes by a Supported Tungsten Oxide Catalyst. Angew. Chemie. 2011, 50, 12062–12066. DOI: 10.1002/anie.201106064.
  • Ke, I. Sh.; Liu, Sh. T. Synthesis and Catalysis of Tungsten Oxide in Hexagonal Mesoporous Silicas (W-HMS). Appl. Catal. A: Gen. 2007, 317, 91–96. DOI: 10.1016/j.apcata.2006.10.007.
  • Dimitrakopoulos, L. T.; Dimitrakopoulos, T.; Alexander, P. W.; Logic, D.; Hibbert, D. B. A Tungsten Oxide Coated Wire Electrode Used as a pH Sensor in Flow Injection Potentiometry. Anal. Commun. 1998, 35, 395–398. DOI: 10.1039/A807697.
  • Liua, Z.; Miyauchi, M.; Yamazaki, T.; Shen, Y. Facile Synthesis and NO2 Gas Sensing of Tungsten Oxide Nanorods Assembled Microspheres. Sensor. Actuator. B. 2009, 140, 514–519. DOI: 10.1016/j.snb.2009.04.059.
  • Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Rosch, N.; Sundermeyer, J. Olefin Epoxidation with Inorganic Peroxides. Solutions to Four Long-Standing Controversies on the Mechanism of Oxygen Transfer. Acc. Chem. Res. 2004, 37, 645–652. DOI: 10.1039/A807697I.
  • Kühn, F. E.; Santos, A. M.; Roesky, P. W.; Herdtweck, E.; Scherer, W.; Gisdakis, P.; Yudanov, I.V.; Di Valentin, C.; Rösch, N. Trigonal-Bipyramidal Lewis Base Adducts of Methyltrioxorhenium(VII) and Their Bisperoxo Congeners: Characterization, application in Catalytic Epoxidation, and Density Functional Mechanistic Study. Chem. Eur. J. 1999, 5, 3603–3615. DOI: 10.1002/(SICI)1521-3765(19991203)5:12.
  • Ferreira, P.; Xue, W. M.; Bencze, E.; Hberhardt, E.; Kuhn, F. Bidentate Lewis Base Adducts Methyltrioxorhenium(VII) and Their Application Incatalytic Epoxidation. Inorg. Chem. 2001, 40, 5834–5841. DOI: 10.1021/ic010610f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.