127
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

C68: A non-IPR fullerene capable of binding extraordinary amounts of Cs atoms

ORCID Icon, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 206-214 | Received 13 Sep 2018, Accepted 22 Oct 2018, Published online: 12 Jan 2019

References

  • Löffler, D.; Weis, P.; Malik, S.; Böttcher, A.; Kappes, M. M. Thermal Stability, Phase Segregation, and Sublimation of Cesium Fulleride Thin Films. Phys. Rev. B. 2008, 77, 155405.
  • Brouet, V.; Alloul, H.; Forró, L. Coexistence of Spin Singlets and Metallic Behavior in Simple Cubic CsC60. Phys. Rev. B. 2002, 66, 155123.
  • Messaoudi, A.; Conard, J.; Setton, R.; Béguin, F. New Intercalation Compounds of C60 with Cesium. Chem. Phys. Lett. 1993, 202, 506–508. DOI:10.1016/0009-2614(93)90039-4.
  • Palstra, T.; Zhou, O.; Iwasa, Y.; Sulewski, P.; Fleming, R.; Zegarski, B. Superconductivity at 40K in Cesium Doped C60. Solid State Commun. 1995, 93, 327–330. DOI:10.1016/0038-1098(94)00787-X.
  • Haddon R. C. Electronic Structure, Conductivity and Superconductivity of Alkali Metal Doped C60. Pure Appl. Chem 1993, 65,11. DOI: 10.1351/pac199365010011.
  • Zhou, O.; Fischer, J. E.; Coustel, N.; Kycia, S.; Zhu, Q.; McGhie, A. R.; Romanow, W. J.; McCauley, J. P.; Smith, A. B.; Cox, D. E. Structure and Bonding in Alkali-metal-doped C60. Cox, Nature 1991, 351, 462. DOI:10.1002/chin.199136027.
  • Kroto, H. W. The Stability of the Fullerenes C n, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. DOI:10.1038/329529a0.
  • Petrle, S.; Bohme, D. Enhanced Reactivity of Fullerene Cations Containing Adjacent Pentagons. Nature 1993, 365, 426–429. DOI:10.1038/365426a0.
  • Ulaş, S.; Bundschuh, S.; Jester, S.-S.; Eberl, C.; Kraft, O.; Hölscher, H.; Böttcher, A.; Kappes, M. M. Mechanical Properties of C58 Materials and Their Dependence on Thermal Treatment. Carbon 2014, 68, 125–137.
  • Bihlmeier, A.; Samson, C. C. M.; Klopper, W. DFT Study of Fullerene Dimers. Chem. Phys. Chem. 2005, 6, 2625–2632.
  • Ma, F.; Li, Z.-R.; Zhou, Z.-J.; Wu, D.; Li, Y.; Wang, Y.-F.; Li, Z.-S. Modulated Nonlinear Optical Responses and Charge Transfer Transition in Endohedral Fullerene Dimers Na@C 60 C 60 @F with n -Fold Covalent Bond (n = 1, 2, 5, and 6) and Long Range Ion Bond. J. Phys. Chem. C. 2010, 114, 11242–11247. DOI:10.1021/jp9116479.
  • Zhechkov, L.; Heine, T.; Seifert, G. D5h C 50 Fullerene: A Building Block for Oligomers and Solids? J. Phys. Chem. A. 2004, 108, 11733–11739. DOI:10.1021/jp046318l.
  • Sabirov, D. S.; Terentyev, A. O.; Bulgakov, R. G. Polarizability of Fullerene [2 + 2]-Dimers: A DFT Study. Phys. Chem. Chem. 2014, 16, 14594–14600. DOI:10.1039/c3cp55528c.
  • Pankratyev, E. Y.; Tukhbatullina, A. A.; Sabirov, D. S. Dipole Polarizability, Structure, and Stability of [2 + 2]-Linked Fullerene Nanostructures (C 60 ) n ( n ≤7). Physica E. 2017, 86, 237–242. DOI:10.1016/j.physe.2016.10.042.
  • Löffler, D.; Jester, S.-S.; Weis, P.; Böttcher, A.; Kappes, M. M. Deuteration-induced Scission of C58 Oligomers. J. Chem. Phys. 2006, 125, 224705.
  • Chen, Z. The Smaller Fullerene C50, isolated as C50Cl10. Angew. Chem. Int. Ed. Engl. 2004, 43, 4690–4691.
  • Ulas, S.; Löffler, D.; Weis, P.; Böttcher, A.; Kappes, M. M. Desorption of C60 upon Thermal Decomposition of Cesium C58 Fullerides. J. Chem. Phys. 2012, 136, 114708.
  • Ulaş, S.; Weippert, J.; Malik, S.; Strelnikov, D.; Kern, B.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Böttcher, A. High‐Temperature CsxC58 Fullerides. Phys. Status Solidi B. 2018, in press. DOI:10.1002/pssb.201800453.
  • Rayane, D.; Antoine, R.; Dugourd, P.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M. Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface. Phys. Rev. Lett. 2000, 84, 1962–1965.
  • Rabilloud, F.; Antoine, R.; Broyer, M.; Compagnon, I.; Dugourd, P.; Rayane, D.; Calvo, F.; Spiegelman, F. Electric Dipoles and Susceptibilities of Alkali Clusters/Fullerene Complexes: Experiments and Simulations †. J. Phys. Chem. C. 2007, 111, 17795–17803. DOI:10.1021/jp071126m.
  • Löffler, D.; Jester, S. S.; Weis, P.; Böttcher, A.; Kappes, M. M. Cn Films (n = 50, 52, 54, 56, and 58) on Graphite: Cage Size Dependent Electronic Properties. J. Chem. Phys. 2006, 124, 054705.
  • della Porta, O.; Emili, C.; Hellier, J. Alkali Metal Generation and Gas Evolution from Alkali Metal Dispensers. IEEE Conference on Tube Techniques, IEEE, New York, 1968. S. TR18.
  • Succi, M.; Canino, R.; Ferrario, B. Atomic Absorption Evaporation Flow Rate Measurements of Alkali Metal Dispensers. Vacuum 1985, 35, 579–582. DOI:10.1016/0042-207X(85)90319-7.
  • Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B. 1972, 5, 4709–4714. DOI:10.1103/PhysRevB.5.4709.
  • Yeh, J.; Lindau, I. Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1 ⩽ Z ⩽ 103. At. Data Nucl. Data Tables 1985, 32, 1–155. DOI:10.1016/0092-640X(85)90016-6.
  • Yeh, J. Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters; Gordon and Breach Science Publications: Langhorne, 1993.
  • Seah, M. P.; Dench, W. A. Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Paths in Solids. Surf. Interface Anal. 1979, 1, 2–11. DOI:10.1002/sia.740010103.
  • Band, I.; Kharitonov, Y.; Trzhaskovskaya, M. Photoionization Cross Sections and Photoelectron Angular Distributions for x-ray Line Energies in the Range 0.132–4.509 keV Targets: 1 ≤ Z ≤ 100. At. Data Nucl. Data Tables 1979, 23, 443–505. DOI:10.1016/0092-640X(79)90027-5.
  • Casalis, L.; Jark, W.; Kiskinova, M.; Lonza, D.; Melpignano, P.; Morris, D.; Rosei, R.; Savoia, A.; Abrami, A.; Fava, C.; et al. ESCA Microscopy Beamline at ELETTRA. Rev. Sci. Inst 1995, 66, 4870–4875., DOI:10.1063/1.1146167.
  • Alcami, M.; Sanchez, G.; Diaz-Tendero, S.; Wang, Y.; Martin, F. Structural Patterns in Fullerenes Showing Adjacent Pentagons: C20 to C72. J. Nanosci. Nanotechnol. 2007, 7, 1329–1338.
  • Wang, K.-A.; Wang, Y.; Zhou, P.; Holden, J. M.; Ren, S-l.; Hager, G. T.; Ni, H. F.; Eklund, P. C.; Dresselhaus, G.; Dresselhaus, M. S. Raman Scattering in C60 and Alkali-metal-doped C60 Films. Phys. Rev., B Condens. Matter. 1992, 45, 1955–1958.
  • Poloni, R.; Machon, D.; Fernandez-Serra, M. V.; Le Floch, S.; Pascarelli, S.; Montagnac, G.; Cardon, H.; San-Miguel, A. High-pressure stability of Cs6C60. Phys. Rev. B. 2008, 77, 125413.
  • Verkhovtsev, A.; Korol, A. V.; Solovyov, A. V. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions. Eur. Phys. J. D. 2017, 71, 212.
  • Hernandez, E.; Meunier, V.; Smith, B. W.; Rurali, R.; Terrones, H.; Buongiorno Nardelli, M.; Terrones, M.; Luzzi, D. E.; Charlier, J.-C. Fullerene Coalescence in Nanopeapods: A Path to Novel Tubular Carbon. Nano Lett. 2003, 3, 1037–1042. DOI:10.1021/nl034283f.
  • Wang, Y.; Zettergren, H.; Rousseau, P.; Chen, T.; Gatchell, M.; Stockett, M. H.; Domaracka, A.; Adoui, L.; Huber, B. A.; Cederquist, H.; et al. Formation Dynamics of Fullerene Dimers C118+, C119+, and C120+. Phys. Rev. A. 2014, 89, 062708.
  • Kim, Y.-H.; Lee, I.-H.; Chang, K. J.; Lee, S. Dynamics of Fullerene Coalescence. Phys. Rev. Lett. 2003, 90, 065501.
  • Ding, F.; Yakobson, B. I. Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence. J. Phys. Chem. Lett. 2014, 5, 2922–2926.
  • Löffler, D.; Ulas, S.; Jester, S.-S.; Weis, P.; Böttcher, A.; Kappes, M. M. Properties of non-IPR Fullerene Films versus Size of the Building Blocks. Phys. Chem. Chem. Phys. 2010, 12, 10671–10684.
  • Seta, M. D.; Petaccia, L.; Evangelisti, F. The LUMO-Derived Band of the Phases. J. Phys. Condens. Matter 1996, 8, 7221.
  • Moissan, H. Action de l'acetylene sur le Cesium-Ammonium et sur le Rubidium-Ammonium. Preparation et Proprietes de Acetylures Acetyleniques C2Cs2.C2H2, C2Rb2.C2H2 et des Carbures de Cesium et de Rubidium. Bull. Soc. Chim. Fr 1904, 31,551. URL: https://gallica.bnf.fr/ark:/12148/bpt6k5469971k/f555.item.
  • Ruschewitz, U.; Müller, P.; Kockelmann, W. Zur Kristallstruktur Von Rb2C2 Und Cs2C2. Z Anorg. Allg. Chem. 2001, 627, 513–522. DOI:10.1002/1521-3749(200103)627:3<513::AID-ZAAC513>3.0.CO;2-I.
  • Hamberger, M.; Liebig, S.; Friedrich, U.; Korber, N.; Ruschewitz, U. Evidence of Solubility of the Acetylide Ion C2(2-): Syntheses and Crystal Structures of K2C2⋅2 NH3, Rb2C2⋅2 NH3, and Cs2C2⋅7 NH3. Angew. Chem. Int. Ed. Engl. 2012, 51, 13006–13010.
  • Malani, H.; Zhang, D. Theoretical Insight for the Metal Insertion Pathway of Endohedral Alkali Metal Fullerenes. J Phys Chem A 2013, 117, 3521–3528.
  • Rengade, M. E. Comptes rendus hebdomadaires des séances de l'Académie des sciences. Seances Acad. Sci 1909, 148, 1199.
  • Rengade, M. E. Recherches sur les sous-oxydes des metaux alcalins (II). Les sous-oxydes de caesium. Bull. Soc. Chim. Fr 1909, 4,994. URL: https://gallica.bnf.fr/ark:/12148/bpt6k5510407r/f1188.item.
  • Martin, T. P.; Stolz, H.; Ebbinghaus, G.; Simon, A. Ionic Clusters Isolated in a Metal Matrix: The Structure and Vibrational Frequencies of Rb 9 O 2 and Cs 11 O 3 Clusters in Alkali Metal Suboxides. J. Chem. Phys. 1979, 70, 1096–1100. DOI:10.1063/1.437608.
  • Pan, C.; Bao, L.; Yu, X.; Fang, H.; Xie, Y.; Akasaka, T.; Lu, X. Facile Access to Y2C2n (2n = 92-130) and Crystallographic Characterization of Y2C2@C1(1660)-C108: A Giant Nanocapsule with a Linear Carbide Cluster. ACS Nano. 2018, 12, 2065–2069.
  • Wang, Y.; Bo, M.; Liu, Y.; Guo, Y.; Wang, H.; Yue, J.; Huang, Y. Skin-depth Lattice Strain, core-level Trap Depression and Valence Charge Polarization of Al Surfaces. Mod. Phys. Lett. B. 2016, 30, 1650037. DOI:10.1142/S0217984916500378.
  • Karamanis, P.; Pouchan, C. Fullerene–C 60 in Contact with Alkali Metal Clusters: Prototype Nano-Objects of Enhanced First Hyperpolarizabilities. J. Phys. Chem. C. 2012, 116, 11808–11819. DOI:10.1021/jp3026573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.