225
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and performance of shape-stable phase change materials based on carbonized-abandoned orange peel and paraffin

, , , , , , , , & show all
Pages 289-298 | Received 28 Oct 2018, Accepted 29 Oct 2018, Published online: 05 Mar 2019

References

  • Karaman, S.; Karaipekli, A.; Sarı, A.; Biçer, A. Polyethylene Glycol (PEG)/Diatomite Composite as a Novel Form-stable Phase Change Material for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2011, 95, 1647–1653. DOI: 10.1016/j.solmat.2011.01.022.
  • Li, Y.; Li, J.; Deng, Y.; Guan, W.; Wang, X.; Qian, T. Preparation of Paraffin/porous TiO 2 Foams with Enhanced Thermal Conductivity as PCM, by Covering the TiO 2 Surface with a Carbon Layer. Appl. Energy 2016, 171, 37–45. DOI: 10.1016/j.apenergy.2016.03.010.
  • Tan, B.; Huang, Z.; Yin, Z.; Min, X.; Liu, Y. g.; Wu, X.; Fang, M. Preparation and Thermal Properties of Shape-stabilized Composite Phase Change Materials Based on Polyethylene Glycol and Porous Carbon Prepared from Potato. RSC Adv. 2016, 6, 15821–15830. DOI: 10.1039/C5RA25685B.
  • Wen, R.; Zhang, X.; Huang, Y.; Yin, Z.; Huang, Z.; Fang, M.; Liu, Y. g.; Wu, X. Preparation and Properties of Fatty Acid Eutectics/Expanded Perlite and Expanded Vermiculite Shape-stabilized Materials for Thermal Energy Storage in Buildings. Energy Build. 2017, 139, 197–204. DOI: 10.1016/j.enbuild.2017.01.025.
  • Wen, R.; Zhang, X.; Huang, Z.; Fang, M.; Liu, Y.; Wu, X.; Min, X.; Gao, W.; Huang, S. Preparation and Thermal Properties of Fatty Acid/diatomite Form-stable Composite Phase Change Material for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2018, 178, 273–279. DOI: 10.1016/j.solmat.2018.01.032.
  • Crabtree, G. W.; Lewis, N. S. Solar Energy Conversion; Springer-Verlag: New York, 1979; pp 71–156.
  • Li, J.; Qian, T.; Min, X.; Guan, W.; Deng, Y.; Ning, L. Enhanced Thermal Conductivity of PEG/diatomite Shape-stabilized Phase Change Materials with Ag Nanoparticles for Thermal Energy Storage. J. Mater. Chem. A. 2015, 3, 8526–8536. DOI: 10.1039/C5TA00309A.
  • Tang, B.; Wei, H.; Zhao, D.; Zhang, S. Light-heat Conversion and Thermal Conductivity Enhancement of PEG/SiO 2 Composite PCM by in Situ Ti 4 O 7 Doping. Sol. Energy Mater. Sol. Cells 2017, 161, 183–189. DOI: 10.1016/j.solmat.2016.12.003.
  • Tang, B.; Wu, C.; Qiu, M.; Zhang, X.; Zhang, S. PEG/SiO2–Al2O3 Hybrid Form-stable Phase Change Materials with Enhanced Thermal Conductivity. Mater. Chem. Phys. 2014, 144, 162–167. DOI: 10.1016/j.matchemphys.2013.12.036.
  • Xiao, X.; Zhang, P.; Li, M. Thermal Characterization of Nitrates and Nitrates/expanded Graphite Mixture Phase Change Materials for Solar Energy Storage. Energy Conv. Mngment. 2013, 73, 86–94. DOI: 10.1016/j.enconman.2013.04.007.
  • Chen, C.; Liu, W.; Wang, H.; Peng, K. Synthesis and Performances of Novel Solid–solid Phase Change Materials with Hexahydroxy Compounds for Thermal Energy Storage. Appl. Energy 2015, 152, 198–206. DOI: 10.1016/j.apenergy.2014.12.004.
  • Sharif, M. K. A.; Al-Abidi, A. A.; Mat, S.; Sopian, K.; Ruslan, M. H.; Sulaiman, M. Y.; Rosli, M. A. M. Review of the Application of Phase Change Material for Heating and Domestic Hot Water Systems. Renew. Sust. Energy Rev. 2015, 42, 557–568. DOI: 10.1016/j.rser.2014.09.034.
  • Tian, B.; Yang, W.; Luo, L.; Wang, J.; Zhang, K.; Fan, J.; Wu, J.; Xing, T. Synergistic Enhancement of Thermal Conductivity for Expanded Graphite and Carbon Fiber in Paraffin/EVA Form-stable Phase Change Materials. Sol. Energy 2016, 127, 48–55. DOI: 10.1016/j.solener.2016.01.011.
  • Zhang, X.; Huang, Z.; Ma, B.; Wen, R.; Min, X.; Huang, Y.; Yin, Z.; Liu, Y.; Fang, M.; Wu, X. Preparation and Performance of Novel Form-stable Composite Phase Change Materials Based on Polyethylene Glycol/White Carbon Black Assisted by Super-ultrasound-Assisted. Thermochim. Acta 2016, 638, 35–43. DOI: 10.1016/j.tca.2016.06.012.
  • Chen, L.; Zou, R.; Xia, W.; Liu, Z.; Shang, Y.; Zhu, J.; Wang, Y.; Lin, J.; Xia, D.; Cao, A. Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges. ACS Nano 2012, 6, 10884–10892. DOI: 10.1021/nn304310n.
  • Fang, G.; Li, H.; Liu, X. Preparation and Properties of Lauric Acid/silicon Dioxide Composites as Form-stable Phase Change Materials for Thermal Energy Storage. Mater. Chem. Phys. 2010, 122, 533–536. DOI: 10.1016/j.matchemphys.2010.03.042.
  • Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on Thermal Conductivity Enhancement, thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage. Renew. Sust. Energy Rev. 2018, 82, 2730–2742.
  • Qi, G.-Q.; Yang, J.; Bao, R.-Y.; Liu, Z.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Enhanced Comprehensive Performance of Polyethylene Glycol Based Phase Change Material with Hybrid Graphene Nanomaterials for Thermal Energy Storage. Carbon 2015, 88, 196–205. DOI: 10.1016/j.carbon.2015.03.009.
  • Wang, C.; Feng, L.; Li, W.; Zheng, J.; Tian, W.; Li, X. Shape-stabilized Phase Change Materials Based on Polyethylene Glycol/porous Carbon Composite: The Influence of the Pore Structure of the Carbon Materials. Sol. Energy Mater. Sol. Cells 2012, 105, 21–26. DOI: 10.1016/j.solmat.2012.05.031.
  • Zhang, N.; Yuan, Y.; Yuan, Y.; Cao, X.; Yang, X. Effect of Carbon Nanotubes on the Thermal Behavior of Palmitic–stearic Acid Eutectic Mixtures as Phase Change Materials for Energy Storage. Sol. Energy 2014, 110, 64–70. DOI: 10.1016/j.solener.2014.09.003.
  • Pandey, A. K.; Hossain, M. S.; Tyagi, V. V.; Rahim, N. A.; Selvaraj, J. A. L.; Sari, A. Novel Approaches and Recent Developments on Potential Applications of Phase Change Materials in Solar Energy. Renew. Sust. Energy Rev. 2018, 82, 281–323. DOI: 10.1016/j.rser.2017.09.043.
  • Vasu, A.; Hagos, F. Y.; Noor, M. M.; Mamat, R.; Azmi, W. H.; Abdullah, A. A.; Ibrahim, T. K. Corrosion Effect of Phase Change Materials in Solar Thermal Energy Storage Application. Renew. Sust. Energy Rev. 2017, 76, 19–33. DOI: 10.1016/j.rser.2017.03.018.
  • Moreno, P.; Solé, C.; Castell, A.; Cabeza, L. F. The Use of Phase Change Materials in Domestic Heat Pump and Air-conditioning Systems for Short Term Storage: A Review. Renew. Sust. Energy Rev. 2014, 39, 1–13. DOI: 10.1016/j.rser.2014.07.062.
  • Zhai, X. Q.; Wang, X. L.; Wang, T.; Wang, R. Z. A Review on Phase Change Cold Storage in Air-conditioning System: Materials and Applications. Renew. Sust. Energy Rev. 2013, 22, 108–120. DOI: 10.1016/j.rser.2013.02.013.
  • Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A Review on Phase Change Materials Integrated in Building Walls. Renew. Sust. Energy Rev. 2011, 15, 379–391 DOI: 10.1016/j.rser.2010.08.019.
  • Zhou, D.; Zhao, C. Y.; Tian, Y. Review on Thermal Energy Storage with Phase Change Materials (PCMs) in Building Applications. Appl. Energy 2012, 92, 593–605. DOI: 10.1016/j.apenergy.2011.08.025.
  • Guan, W-m.; Li, J-h.; Qian, T-t.; Wang, X.; Deng, Y. Preparation of Paraffin/expanded Vermiculite with Enhanced Thermal Conductivity by Implanting Network Carbon in Vermiculite Layers. Chem. Eng. J. 2015, 277, 56–63. DOI: 10.1016/j.cej.2015.04.077.
  • Lu, Z.; Zhang, J.; Sun, G.; Xu, B.; Li, Z.; Gong, C. Effects of the Form-stable Expanded Perlite/paraffin Composite on Cement Manufactured by Extrusion Technique. Energy 2015, 82, 43–53. DOI: 10.1016/j.energy.2014.12.043.
  • Silakhori, M.; Naghavi, M. S.; Metselaar, H. S. C.; Mahlia, T. M. I.; Fauzi, H.; Mehrali, M. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage. Materials (Basel) 2013, 6, 1608–1620. DOI: 10.3390/ma6051608.
  • Rao, Z. H.; Wang, S. H.; Zhang, Y. L.; Zhang, G. Q.; Zhang, J. Y. Thermal Properties of Paraffin/Nano-AlN Phase Change Energy Storage Materials. Energy Sources 2014, 36, 2281–2286. DOI: 10.1080/15567036.2011.590869.
  • Cai, Y.; Sun, G.; Liu, M.; Zhang, J.; Wang, Q.; Wei, Q. Fabrication and Characterization of Capric–lauric–palmitic Acid/electrospun SiO2 Nanofibers Composite as Form-stable Phase Change Material for Thermal Energy Storage/Retrieval. Solar Energy 2015, 118, 87–95. DOI: 10.1016/j.solener.2015.04.042.
  • Cao, L.; Tang, F.; Fang, G. Preparation and Characteristics of Microencapsulated Palmitic Acid with TiO2 Shell as Shape-stabilized Thermal Energy Storage Materials. Sol. Energy Mater. Sol. Cells 2014, 123, 183–188. DOI: 10.1016/j.solmat.2014.01.023.
  • Wen, R.; Jia, P.; Huang, Z.; Fang, M.; Liu, Y.; Wu, X.; Min, X.; Gao, W. Thermal Energy Storage Properties and Thermal Reliability of PEG/bone Char Composite as a Form-stable Phase Change Material. J. Therm. Anal. Calorim. 2018, 132, 1753–1761. DOI: 10.1007/s10973-017-6934-8.
  • Zhang, X.; Huang, Z.; Yin, Z.; Zhang, W.; Huang, Y.; Liu, Y.; Fang, M.; Wu, X.; Min, X. Form Stable Composite Phase Change Materials from Palmitic-lauric Acid Eutectic Mixture and Carbonized Abandoned Rice: Preparation, Characterization, and Thermal Conductivity Enhancement. Energy and Buildings 2017, 154, 46–54. DOI: 10.1016/j.enbuild.2017.08.057.
  • Sun, D.; Wang, L. Utilization of Paraffin/expanded Perlite Materials to Improve Mechanical and Thermal Properties of Cement Mortar. Construct. Building Mater. 2015, 101, 791–796. DOI: 10.1016/j.conbuildmat.2015.10.123.
  • Wei, T.; Zheng, B.; Liu, J.; Gao, Y.; Guo, W. Structures and Thermal Properties of Fatty Acid/expanded Perlite Composites as Form-stable Phase Change Materials. Energy and Buildings 2014, 68, 587–592. DOI: 10.1016/j.enbuild.2013.09.050.
  • Qian, T.; Li, J.; Ma, H.; Yang, J. Adjustable Thermal Property of Polyethylene Glycol/diatomite Shape‐stabilized Composite Phase Change Material. Polym. Compos. 2016, 37, 854–860. DOI: 10.1002/pc.23243.
  • Chung, O.; Jeong, S.-G.; Kim, S. Preparation of Energy Efficient Paraffinic PCMs/expanded Vermiculite and Perlite Composites for Energy Saving in Buildings. Sol. Energy Mater. Sol. Cells 2015, 137, 107–112. DOI: 10.1016/j.solmat.2014.11.001.
  • Zhai, T.; Li, T.; Wu, S.; Wang, R. Preparation and Thermal Performance of Form-stable Expanded Graphite/stearic Acid Composite Phase Change Materials with High Thermal Conductivity. Chin. Sci. Bull. 2018, 63, 674–683. DOI: 10.1360/N972017-00831.
  • Zhao, Y.; Min, X.; Huang, Z.; Liu, Y. g.; Wu, X.; Fang, M. Honeycomb-like Structured Biological Porous Carbon Encapsulating PEG: A Shape-stable Phase Change Material with Enhanced Thermal Conductivity for Thermal Energy Storage. Energy and Buildings 2018, 158, 1049–1062. DOI: 10.1016/j.enbuild.2017.10.078.
  • Liang, W.; Wang, L.; Zhu, H.; Pan, Y.; Zhu, Z.; Sun, H.; Ma, C.; Li, A. Enhanced Thermal Conductivity of Phase Change Material Nanocomposites Based on MnO 2 Nanowires and Nanotubes for Energy Storage. Sol. Energy Mater. Sol. Cells 2018, 180, 158–167. DOI: 10.1016/j.solmat.2018.03.005.
  • Gondora, W.; Doudin, K.; Nowakowski, D. J.; Xiao, B.; Ding, Y.; Bridgwater, T.; Yuan, Q. Encapsulation of Phase Change Materials Using Rice-husk-Char. Appl. Energy 2016, 182, 274–281. DOI: 10.1016/j.apenergy.2016.08.102.
  • Ziba, M. F.; Sasan, R.; Hassan, Z. M.; Mozhgan, B. Preparation of FE/ACTIVATED Carbon Directly from Orange Peel and Its Application in Removal of Nitrate from Aqueous Solutions. Journal of Applied Chemistry 2018, 12, 41–49.
  • Arie, A. A.; Kristianto, H.; Halim, M.; Lee, J. K.; Preparation of Orange Peel Based Activated Carbons Using Chemical Activation and Surface Modification Method as Electrode's Materials for Lithium Ion Capacitor. Sci. Adv. Mater. 2018, 10, 119–123. DOI: 10.1166/sam.2018.2874.
  • Sheng, C.; Char Structure Characterised by Raman Spectroscopy and Its Correlations with Combustion Reactivity. Fuel 2007, 86, 2316–2324. DOI: 10.1016/j.fuel.2007.01.029.
  • Wallace, G. G.; Chen, J.; Li, D.; Moulton, S. E.; Razal, J. M.; Nanostructured Carbon Electrodes. J. Mater. Chem. 2010, 20, 3553–3562. DOI: 10.1039/b918672g.
  • Ma, Y.; Yan, C.; Xu, H.; Liu, D.; Shi, P.; Zhu, Y.; Liu, J.; Enhanced Interfacial Properties of Carbon Fiber Reinforced Polyamide 6 Composites by Grafting Graphene Oxide onto Fiber Surface. Appl. Surf. Sci. 2018, 452, 286–298. DOI: 10.1016/j.apsusc.2018.04.274.
  • Khalil, S. A.; Moustafa, M. A.; Ebian, A. R.; Motawi, M. M.; GI Absorption of Two Crystal Forms of Sulfameter in Man. J. Pharm. Sci. 1972, 61, 1615–1617.
  • Tang, F.; Cao, L.; Fang, G.; Preparation and Thermal Properties of Stearic Acid/titanium Dioxide Composites as Shape-stabilized Phase Change Materials for Building Thermal Energy Storage. Energy and Buildings 2014, 80, 352–357. DOI: 10.1016/j.enbuild.2014.05.030.
  • Qian, Y.; Wei, P.; Jiang, P.; Li, Z.; Yan, Y.; Liu, J.; Preparation of a Novel PEG Composite with Halogen-free Flame Retardant Supporting Matrix for Thermal Energy Storage Application. Appl. Energy 2013, 106, 321–327. DOI: 10.1016/j.apenergy.2012.12.070.
  • Li, B.; Liu, T.; Hu, L.; Wang, Y.; Gao, L.; Fabrication and Properties of Microencapsulated Paraffin@SiO2 Phase Change Composite for Thermal Energy Storage. Acs Sustainable Chem. Eng. 2013, 1, 374–380. DOI: 10.1021/sc300082m.
  • Qian, T.; Li, J.; Ma, H.; Yang, J.; The Preparation of a Green Shape-stabilized Composite Phase Change Material of Polyethylene Glycol/SiO 2 with Enhanced Thermal Performance Based on Oil Shale Ash via Temperature-assisted Sol–gel Method. Sol. Energy Mater. Sol. Cells 2015, 132, 29–39. DOI: 10.1016/j.solmat.2014.08.017.
  • Yu, S.; Wang, X.; Wu, D.; Microencapsulation of n-octadecane Phase Change Material with Calcium Carbonate Shell for Enhancement of Thermal Conductivity and Serving Durability: Synthesis, microstructure, and Performance Evaluation. Appl. Energy 2014, 114, 632–643. DOI: 10.1016/j.apenergy.2013.10.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.