346
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Optimized preparation of nitrogen-doped carbon dots by response surface methodology and application in Cd2+ detection

, , &
Pages 233-239 | Received 17 Aug 2018, Accepted 19 Nov 2018, Published online: 29 Dec 2018

References

  • Cao, X. T.; Ma, J.; Lin, Y. P.; Yao, B. X.; Li, F. M.; Weng, W.; Lin, X. C. A Facile Microwave-assisted Fabrication of Fluorescent Carbon Nitride Quantum Dots and Their Application in the Detection of Mercury Ions. Spectrochim. Acta. A. 2015, 151, 875–880. DOI: 10.1016/j.saa.2015.07.034.
  • Qian, Z. S.; Chai, L. J.; Tang, C.; Huang, Y. Y.; Chen, J. R.; Feng, H. A Fluorometric Assay for Acetylcholinesterase Activity and Inhibitor Screening with Carbon Quantum Dots. Sensor. Actuat. B: Chem. 2016, 222, 879–886. DOI: 10.1016/j.snb.2015.09.023.
  • Wang, Q.; Zhang, S. R.; Ge, H. G.; Tian, G. H.; Cao, N. N.; Li, Y. Q. A Fluorescent Turn-off/on Method Based on Carbon Dots as Fluorescentprobes for the Sensitive Determination of Pb2+and Pyrophosphate Inan Aqueous Solution. Sensor. Actuat. B: Chem. 2015, 207, 25–33. DOI: 10.1016/j.snb.2014.10.096.
  • Bourlinos, A. B.; Karakassides, M. A.; Kouloumpis, A.; Gournis, D.; Bakandritsos, A.; Papagiannouli, I.; Aloukos, P.; Couris, S.; Hola, K.; Zboril, R.; et al. Synthesis, characterization and Non-linear Optical Response of Organophilic Carbon Dots. Carbon 2013, 61, 640–649. DOI: 10.1016/j.carbon.2013.05.017.
  • Barati, A.; Shamsipur, M.; Arkan, E.; Hosseinzadeh, L.; Abdollahi, H. Synthesis of Biocompatible and Highly Photoluminescent Nitrogen Doped Carbon Dots from Lime: Analytical Applications and Optimization Using Response Surface Methodology. Mater. Sci. Eng. C. 2015, 47, 325–332. DOI: 10.1016/j.msec.2014.11.035.
  • Jahanbakhshi, M.; Habibi, B. A Novel and Facile Synthesis of Carbon Quantum Dots via Salep Hydrothermal Treatment as the Silver Nanoparticles Support: Application to Electroanalytical Determination of H2O2 in Fetal Bovine Serum. Biosens. Bioelectron. 2016, 81, 143–150. DOI: 10.1016/j.bios.2016.02.064.
  • Yan, Z. Y.; Zhang, Z. W.; Chen, J. Q. Biomass-based Carbon Dots: Synthesis and Applicationin Imatinib Determination. Sensor. Actuat. B: Chem 2016, 225, 469–473. DOI: 10.1016/j.snb.2015.10.107.
  • Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; et al. Quantum-sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. DOI: 10.1021/ja062677d.
  • Li, H. T.; He, X. D.; Liu, Y.; Huang, H. H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. One-step Ultrasonic Synthesis of Water-soluble Carbon Nanoparticles with Excellent Photoluminescent Properties. Carbon 2011, 49, 605–609. DOI: 10.1016/j.carbon.2010.10.004.
  • Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. Water-soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem 2010, 49, 4430–4434. DOI: 10.1002/anie.200906154.
  • Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation. Angew. Chem. Int. Edit 2018, 57, 6216–6220.
  • Li, H.; Shao, F. Q.; Huang, H.; Feng, J. J.; Wang, A. J. Eco-friendly and Rapid Microwave Synthesis of Green Fluorescent Graphitic Carbon Nitride Quantum Dots for Vitro Bioimaging. Sensor. Actuat. B: Chem 2016, 226, 506–511. DOI: 10.1016/j.snb.2015.12.018.
  • Dai, H. C.; Shi, Y.; Wang, Y. L.; Sun, Y. J.; Hu, J. T.; Ni, P. J.; Li, Z. A Carbon Dot Based Biosensor for Melamine Detection by Fluorescence Resonance Energy Transfer. Sensor. Actuat. B: Chem 2014, 202, 201–208. DOI: 10.1016/j.snb.2014.05.058.
  • Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z. One-pot Hydrothermal Synthesis of Highly Luminescent Nitrogen-doped Amphoteric Carbon Dots for Bioimaging from Bombyx mori Silk-natural Proteins. J. Mater. Chem. B 2013, 1, 2868–2873. DOI: 10.1039/c3tb20418a.
  • Yu, C. Y.; Xuan, T. T.; Chen, Y. W.; Zhao, Z. J.; Sun, Z.; Li, H. L. A Facile, green Synthesis of Highly Fluorescent Carbon Nanoparticles from Oatmeal for Cell Imaging. J. Mater. Chem. C 2015, 3, 9514–9518. DOI: 10.1039/C5TC02057C.
  • Xu, J. Y.; Zhou, Y.; Cheng, G. F.; Dong, M. T.; Liu, S. X.; Huang, C. B. Carbon Dots as a Luminescence Sensor for Ultrasensitive Detection of Phosphate and Their Bioimaging Properties. Luminescence 2015, 30, 411–415. DOI: 10.1002/bio.2752.
  • Gedda, G.; Lee, C.; Lin, Y.; Wu, H. F. Green Synthesis of Carbon Dots from Prawn Shells for Highly Selective and Sensitive Detection of Copper Ions. Sensor. Actuat. B: Chem 2016, 224, 396–403.
  • Prasannan, A.; Imae, T. One-pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind. Eng. Chem. Res. 2013, 52, 15673–15678. DOI: 10.1021/ie402421s.
  • Zhou, J. J.; Sheng, Z. H.; Han, H. Y.; Zou, M. Q.; Li, C. X. Facile Synthesis of Fluorescent Carbon Dots Using Watermelon Peel as a Carbon Source. Mater. Lett 2012, 66, 222–224. DOI: 10.1016/j.matlet.2011.08.081.
  • Campos, B. B.; Abellán, C.; Zougagh, M.; Jimenez-Jimenez, J.; Rodríguez-Castellón, E.; Esteves da Silva, J. C. G.; Ríos, A.; Algarra, M. Fluorescent Chemosensor for Pyridine Based on N-doped Carbon Dots. J. Colloid. Inter. Sci 2015, 458, 209–216. DOI: 10.1016/j.jcis.2015.07.053.
  • Liao, S.; Zhao, X. Y.; Zhu, F. W.; Chen, M.; Wu, Z. L.; Song, X. Z.; Yang, H.; Chen, X. Q. Novel S, N-doped Carbon Quantum Dot-based “off-on” fluorescent Sensor for Silver Ion and Cysteine. Talanta 2018, 180, 300–308.
  • Tang, Y.; Rao, L. S.; Li, Z. T.; Lu, H. G.; Yan, C. M.; Yu, S. D.; Ding, X. R.; Yu, B. H. Rapid Synthesis of Highly Photoluminescent Nitrogen-doped Carbon Quantum Dots via a Microreactor with Foamy Copper for the Detection of Hg2+ Ions. Sensor. Actuat. B: Chem 2018, 258, 637–647. DOI: 10.1016/j.snb.2017.11.140.
  • Kim, M. C.; Yu, K. S.; Han, S. Y.; Kim, J.; Lee, J. W.; Lee, N.; Jeong, Y. G.; Kim, D. K. Highly Photoluminescent N-isopropylacrylamide (NIPAAM) passivated Carbon Dots for Multicolor Bioimaging Applications. Eur. Polym. J 2018, 98, 191–198. DOI: 10.1016/j.eurpolymj.2017.11.018.
  • Ghaedi, A. M.; Ghaedi, M.; Vafaei, A.; Iravani, N.; Keshavarz, M.; Rad, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Adsorption of Copper (II) using Modified Activated Carbon Prepared from Pomegranate Wood: Optimization by Bee Algorithm and Response Surface Methodology. J. Mol. Liq 2015, 206, 195–206. DOI: 10.1016/j.molliq.2015.02.029.
  • Nekouei, F.; Nekouei, S. Comparative Study of Photocatalytic Activities of Zn5(OH)8Cl2·H2O and ZnO Nanostructures in Ciprofloxacin Degradation: Response Surface Methodology and Kinetic Studies. Sci. Total Environ 2017, 601-602, 508–517. DOI: 10.1016/j.scitotenv.2017.05.117.
  • Vahid, B. R.; Saghatoleslami, N.; Nayebzadeh, H.; Toghiani, J. Effect of Alumina Loading on the Properties and Activity of SO42−/ZrO2 for Biodiesel Production: Process Optimization via Response Surface Methodology. J. Taiwan Inst. Chem. E 2018, 000, 1–9.
  • Liu, P. P.; Zhang, C. C.; Liu, X.; Cui, P. Preparation of Carbon Quantum Dots with a High Quantum Yield and the Application in Labeling Bovine Serum Albumin. Appl. Surf. Sci 2016, 368, 122–128. DOI: 10.1016/j.apsusc.2016.01.278.
  • Freire, R. M.; Le, N. D. B.; Jiang, Z. W.; Kim, C. S.; Rotello, V. M.; Fechine, P. B. A. NH2-rich Carbon Quantum Dots: A Protein-responsive Probe for Detection and Identification. Sensor. Actuat. B: Chem 2018, 255, 2725–2732. DOI: 10.1016/j.snb.2017.09.085.
  • Xu, W. J.; Zhao, Q. L.; Wang, R. F.; Jiang, Z. M.; Zhang, Z. Z.; Gao, X. W.; Ye, Z. F. Optimization of Organic Pollutants Removal from Soil Eluent by Activated Carbon Derived from Peanut Shells Using Response Surface Methodology. Vacuum 2017, 141, 307–315. DOI: 10.1016/j.vacuum.2017.04.031.
  • Xu, Q.; Li, B. F.; Ye, Y. C.; Cai, W.; Li, W. J.; Yang, C. Y.; Chen, Y. S.; Xu, M.; Li, N.; Zheng, Z. S.; et al. Synthesis, mechanical Investigation, and Application of Nitrogen and Phosphorus co-doped Carbon Dots with a High Photoluminescent Quantum Yield. Nano Res. 2018, 11, 3691–3701. DOI: 10.1007/s12274-017-1937-0.
  • Liu, R. L.; Gao, M. P.; Zhang, J.; Li, Z. L.; Chen, J. Y.; Liu, P.; Wu, D. Q. An Ionic Liquid Promoted Microwave-hydrothermal Route towards Highly Photoluminescent Carbon Dots for Sensitive and Selective Detection of Iron(III). RSC Adv. 2015, 5, 24205–24209. DOI: 10.1039/C5RA00089K.
  • Gu, D.; Hong, L.; Zhang, L.; Liu, H.; Shang, S. M. Nitrogen and Sulfur Coped Highly Luminescent Carbon Dots for Sensitive Detection of Cd (II) ions and Living Cell Imaging Applications. J. Photoch. Photobio. B 2018, 186, 144–151. DOI: 10.1016/j.jphotobiol.2018.07.012.
  • Xu, Q.; Su, R. G.; Chen, Y. S.; Sreenivasan, S. T.; Li, N.; Zheng, X. S.; Zhu, J. F.; Pan, H. B.; Li, W. J.; Xu, C. M.; et al. M. Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, ultra-high Quantum Yield Photoluminescence. ACS Appl. Nano Mater. 2018, 1, 1886–1893. DOI: 10.1021/acsanm.8b00277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.