223
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Healing mechanism of multi-vacancy defective graphene under carbon irradiation

&
Pages 247-255 | Received 18 Oct 2018, Accepted 27 Dec 2018, Published online: 23 Feb 2019

References

  • Zeller, P.; Speck, F.; Weinl, M.; Ostler, M.; Schreck, M.; Seyller, T.; Wintterlin, J. Healing of Graphene on Single Crystalline Ni(111) Films. Appl. Phys. Lett. 2014, 105, 191612. DOI: 10.1063/1.4902057.
  • Regmi, M.; Chisholm, M. F.; Eres, G. The Effect of Growth Parameters on the Intrinsic Properties of Large-area Single Layer Graphene Grown by Chemical Vapor Deposition on Cu. Carbon 2012, 50, 134–141. DOI: 10.1016/j.carbon.2011.07.063.
  • Seah, C.-M.; Chai, S.-P.; Mohamed, A. R. Mechanisms of Graphene Growth by Chemical Vapour Deposition on Transition Metals. Carbon 2014, 70, 1–21. DOI: 10.1016/j.carbon.2013.12.073.
  • Son, M.; Ham, M.-H. Low-temperature Synthesis of Graphene by Chemical Vapor Deposition and Its Applications. Flat Chem. 2017, 5, 40–49. DOI: 10.1016/j.flatc.2017.07.002.
  • Khajehmandali, S.; Angaji, M. T.; Rashidi, A. M. Growth of Few Layer Graphene from Commercial C2hydrocarbons at Low Temperature and Controlled Surface Functionalization. Fuller. Nanotub. Car. N. 2016, 24, 253–259. DOI: 10.1080/1536383X.2016.1140649.
  • Kim, K.; Park, H. J.; Woo, B.-C.; Kim, K. J.; Kim, G. T.; Yun, W. S. Electric Property Evolution of Structurally Defected Multilayer Graphene. Nano Lett. 2008, 8, 3092–3096. DOI: 10.1021/nl8010337.
  • López, V.; Sundaram, R. S.; Gómez-Navarro, C.; Olea, D.; Burghard, M.; Gómez-Herrero, J.; Zamora, F.; Kern, K. Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly-Conductive Graphene Monolayers. Adv. Mater. 2009, 21, 4683–4686. DOI: 10.1002/adma.200901582.
  • Kaiser, A. B.; Gómez-Navarro, C.; Sundaram, R. S.; Burghard, M.; Kern, K. Electrical Conduction Mechanism in Chemically Derived Graphene Monolayers. Nano Lett. 2009, 9, 1787–1792. DOI: 10.1021/nl803698b.
  • Liu, L.; Rim, K. T.; Eom, D.; Heinz, T. F.; Flynn, G. W. Direct Observation of Atomic Scale Graphitic Layer Growth. Nano Lett. 2008, 8, 1872–1878.
  • Kholmanov, I. N.; Edgeworth, J.; Cavaliere, E.; Gavioli, L.; Magnuson, C.; Ruoff, R. S. Healing of Structural Defects in the Topmost Layer of Graphite by Chemical Vapor Deposition. Adv. Mater. 2011, 23, 1675–1678. DOI: 10.1002/adma.201004019.
  • Zan, R.; Ramasse, Q. M.; Bangert, U.; Novoselov, K. S. Graphene Reknits Its Holes. Nano Lett. 2012, 12, 3936–3940.
  • Chen, J.; Shi, T.; Cai, T.; Xu, T.; Sun, L.; Wu, X.; Yu, D. Self Healing of Defected Graphene. Appl. Phys. Lett. 2013, 102, 103–107.
  • Botari, T.; Paupitz, R.; Autreto, P. A. S.; Galvao, D. S. Graphene Healing Mechanisms: A Theoretical Investigation. Carbon 2016, 99, 302–309. DOI: 10.1016/j.carbon.2015.11.070.
  • Zakharchenko, K. V.; Balatsky, A. V. Controlled Healing of Graphene Nanopores. Carbon 2014, 80, 12–18. DOI: 10.1016/j.carbon.2014.07.085.
  • Cheng, M.; Yang, R.; Zhang, L.; Shi, Z.; Yang, W.; Wang, D.; Xie, G.; Shi, D.; Zhang, G. Restoration of Graphene from Graphene Oxide by Defect Repair. Carbon 2012, 50, 2581–2587. DOI: 10.1016/j.carbon.2012.02.016.
  • Liu, Z.; Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Chiu, P.-W.; Iijima, S.; Suenaga, K. In Situ Observation of Step-edge in-plane Growth of Graphene in a STEM. Nat. Commun. 2014, 5, 4055
  • Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé–Hoover Chains: The Canonical Ensemble via Continuous Dynamics. J. Chem. Phys. 1992, 97, 2635–2643. DOI: 10.1063/1.463940.
  • Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. III. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. DOI: 10.1021/jp709896w.
  • Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. DOI: 10.1006/jcph.1995.1039.
  • Terdalkar, S. S.; Zhang, S.; Rencis, J. J.; Hsia, K. J. Molecular Dynamics Simulations of Ion-irradiation Induced Deflection of 2D Graphene Films. Int. J. Solids Struct. 2008, 45, 3908–3917. DOI: 10.1016/j.ijsolstr.2007.12.025.
  • Tsetseris, L.; Pantelides, S. T. Adatom Complexes and Self-healing Mechanisms on Graphene and Single-wall Carbon Nanotubes. Carbon 2009, 47, 901–908. DOI: 10.1016/j.carbon.2008.12.002.
  • Song, B.; Schneider, G. F.; Xu, Q.; Pandraud, G.; Dekker, C.; Zandbergen, H. Atomic-scale Electron-beam Sculpting of near-defect-free Graphene nanostructures. Nano Lett. 2011, 11, 2247–2250.
  • Zhu, J.; Shi, D. A Possible Self-healing Mechanism in Damaged Graphene by Heat Treatment. Comput. Mater. Sci. 2013, 68, 391–395. DOI: 10.1016/j.commatsci.2012.10.041.
  • Westenfelder, B.; Meyer, J. C.; Biskupek, J.; Kurasch, S.; Scholz, F.; Krill, C. E.; III.; Kaiser, U. Transformations of Carbon Adsorbates on Graphene Substrates under Extreme Heat. Nano Lett. 2011, 11, 5123–5127. DOI: 10.1021/nl203224z.
  • Tsetseris, L.; Pantelides, S. T. Adsorbate-Induced Defect Formation and Annihilation on Graphene and Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2009, 113, 941–944. DOI: 10.1021/jp809228p.
  • McClure, S. M.; Reichman, M. I.; Seets, D. C.; Nolan, P. D.; Sitz, G. O.; Mullins, C. B. (2003.) Dynamics of Precursors in Activated Dissociative Chemisorption Systems. Chem. Phys. Solid Surf. 11, 109–142.
  • Pfnür, H. E.; Rettner, C. T.; Lee, J.; Madix, R. J.; Auerbach, D. J. Dynamics of the Activated Dissociative Chemisorption of N2 on W(110): a Molecular Beam Study. J. Chem. Phys. 1986, 85, 7452–7466. DOI: 10.1063/1.451334.
  • Lusk, M. T.; Carr, L. D. Nanoengineering Defect Structures on Graphene. Phys. Rev. Lett. 2008, 100, 175503.
  • Lehtinen, O.; Vats, N.; Algara-Siller, G.; Knyrim, P.; Kaiser, U. Implantation and atomic-scale investigation of self-interstitials in graphene. Nano Lett. 2015, 15, 235–241.
  • Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct Evidence for Atomic Defects in Graphene Layers. Nature 2004, 430, 867–870.
  • Lehtinen, P. O.; Foster, A. S.; Ayuela, A.; Krasheninnikov, A.; Nordlund, K.; Nieminen, R. M. Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet. Phys. Rev. Lett. 2003, 91, 017202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.