394
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Effect of fuel structure on synthesis of carbon nanotubes in diffusion flames

, , , &
Pages 265-272 | Received 02 Jan 2019, Accepted 07 Jan 2019, Published online: 20 Feb 2019

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56–58. DOI:10.1038/354056a0.
  • Merchan-Merchan, W.; Saveliev, A. V.; Kennedy, L.; Jimenez, W. C. Combustion Synthesis of Carbon Nanotubes and Related Nanostructures. Prog. Energy Combust. Sci. 2010, 36, 696–727. DOI:10.1016/j.pecs.2010.02.005.
  • Singh, I.; Rehni, A. K.; Kumar, P.; Kumar, M.; Aboul-Enein, H. Y. Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications. Fuller. Nanotub. Car. N. 2009, 17, 361–377. DOI:10.1080/15363830903008018.
  • Roslan, M. S.; Chaudary, K. T.; Haider, Z.; Aziz, M. S.; Ali, J. Multi-Walled Carbon Nanotubes Grow under Low Pressure Hydrogen, Air, and Argon Ambient by Arc Discharge Plasma. Fuller. Nanotub. Car. N. 2017, 25, 269–272. DOI:10.1080/1536383X.2017.1285287.
  • Puretzky, A. A.; Geohegan, D. B.; Fan, X.; Pennycook, S. J. Dynamics of Single-Wall Carbon Nanotube Synthesis by Laser Vaporization. Appl. Phys. A. 2000, 70, 153–160. DOI:10.1007/s003390050027.
  • Zhao, Q.; Xu, Z.; Hu, Y.; Ding, F.; Zhang, J. Chemical Vapor Deposition Synthesis of Near-Zigzag Single-Walled Carbon Nanotubes with Stable Tube-Catalyst Interface. Sci. Adv. 2016, 2, e1501729. DOI:10.1126/sciadv.1501729.
  • Sankararamakrishnan, N.; Chauhan, D.; Dwivedi, J. Synthesis of Functionalized Carbon Nanotubes by Floating Catalytic Chemical Vapor Deposition Method and Their Sorption Behavior toward Arsenic. Chem. Eng. J. 2016, 284, 599–608. DOI:10.1016/j.cej.2015.08.145.
  • Song, L.; Ci, L. J.; Sun, L. F.; Jin, C.; Liu, L.; Ma, W.; Liu, D.; Zhao, X.; Luo, S.; Zhang, Z.; et al. Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition. Adv. Mater. 2006, 18, 1817–1821. DOI:10.1002/adma.200502372.
  • Huang, S.; Woodson, M.; Smalley, R.; Liu, J. Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using “Fast-Heating” Chemical Vapor Deposition Process. Nano Lett. 2004, 4, 1025–1028. DOI:10.1021/nl049691d.
  • El-Maghraby, A.; El-Deeb, H. A.; Khattab, M. A. Influence of FeNi/Al2O3 Catalyst Compositions on the Growth of Carbon Nanotubes. Fuller. Nanotub. Car. N. 2015, 23, 27–34. DOI:10.1080/1536383X.2012.702159.
  • Hall, B.; Zhuo, C.; Levendis, Y. A.; Richter, H. Influence of the Fuel Structure on the Flame Synthesis of Carbon Nanomaterials. Carbon. 2011, 49, 3412–3423. DOI:10.1016/j.carbon.2011.04.036.
  • Lee, K. Y.; Yeoh, W. M.; Chai, S. P.; Ichikawa, S.; Mohamed, A. R. Optimization of Carbon Nanotubes Synthesis via Methane Decomposition over Alumina-Based Catalyst. Fuller. Nanotub. Car. N. 2010, 18, 273–284. DOI:10.1080/15363831003782999.
  • Gopinath, P.; Gore, J. Chemical Kinetic Considerations for Postflame Synthesis of Carbon Nanotubes in Premixed Flames Using a Support Catalyst. Combust. Flame. 2007, 151, 542–550. DOI:10.1016/j.combustflame.2006.05.004.
  • Parsian, S.; Shahidi, S.; Mirjalili, M.; Ghoranneviss, M. In Situ Synthesis of Carbon Nanotubes on Glass Mat Using Thermal Chemical Vapor Deposition Method. Fuller. Nanotub. Car. N. 2018, 26, 551–556. DOI:10.1080/1536383X.2018.1457650.
  • Chong, C. T.; Tan, W. H.; Lee, S. L.; Chong, W. W. F.; Su, S. L.; Valera-Medina, A. Morphology and Growth of Carbon Nanotubes Catalytically Synthesised by Premixed Hydrocarbon-Rich Flames. Mater. Chem. Phys. 2017, 197, 246–255. DOI:10.1016/j.matchemphys.2017.05.036.
  • Liu, Y.; Fu, Q.; Pan, C. Synthesis of Carbon Nanotubes on Pulse Plated Ni Nanocrystalline Substrate in Ethanol Flames. Carbon. 2005, 43, 2264–2271. DOI:10.1016/j.carbon.2005.04.005.
  • Rashid, A. M.; Radiah, A. B. D.; Zurina, Z. A.; Fakhru'l-Razi, A. Low-Temperature Synthesis of Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method. Fuller. Nanotub. Car. N. 2011, 19, 522–531. DOI:10.1080/1536383X.2010.494781.
  • Mi, Y.; Liu, Y.; Yuan, D.; Zhang, J.; Yong, X. Synthesis of Carbon Nanotubes via Toluene-Thermal Reduction Process at Moderate Temperature. J. Mater. Sci. 2005, 40, 3635–3638. DOI:10.1007/s10853-005-0489-y.
  • Silva, A. A.; Pinheiro, R. A.; Trava-Airoldi, V. J.; Corat, E. J. Influence of Catalyst Particles on Multi-Walled Carbon Nanotubes Morphology and Structure. Fuller. Nanotub. Car. N. 2018, 26, 315–323. DOI:10.1080/1536383X.2018.1431217.
  • Memon, N. K.; Xu, F.; Sun, G.; Dunham, S. J. B.; Kear, B. H.; Tse, S. D. Flame Synthesis of Carbon Nanotubes and Few-Layer Graphene on Metal-Oxide Spinel Powders. Carbon. 2013, 63, 478–486. DOI:10.1016/j.carbon.2013.07.023.
  • Du, X.; Liu, H. Y.; Xu, F.; Zeng, Y.; Mai, Y. W. Flame Synthesis of Carbon Nanotubes onto Carbon Fiber Woven Fabric and Improvement of Interlaminar Toughness of Composite Laminates. Compos. Sci. Technol. 2014, 101, 159–166. DOI:10.1016/j.compscitech.2014.07.011.
  • Mo, Y.; Zhou, H.; Zhang, B.; Du, X.; Lin, Z.; Li, W.; Liu, H. Y.; Mai, Y. W. Facile Flame Catalytic Growth of Carbon Nanomaterials on the Surface of Carbon Nanotubes. Appl. Surf. Sci. 2019, 465, 23–30. DOI:10.1016/j.apsusc.2018.09.139.
  • Chu, H.; Han, W.; Ren, F.; Xiang, L.; Wei, Y.; Zhang, C. Flame Synthesis of Carbon Nanotubes on Different Substrates in Methane Diffusion Flames. ES Energy Environ. 2018, 2, 73–81. DOI:10.30919/esee8c165.
  • Chu, H.; Han, W.; Cao, W.; Gu, M.; Xu, G. Methane Addition to Ethylene on the Morphology and Size Distribution of Soot in a Laminar Co-Flow Diffusion Flame. Energy. 2019, 166, 392–400. DOI:10.1016/j.energy.2018.10.093.
  • Chu, H.; Han, W.; Cao, W.; Tao, C.; Raza, M.; Chen, F. Experimental Investigation of Soot Morphology and Primary Particle Size along Axial and Radial Direction of an Ethylene Diffusion Flame via Electron Microscopy. J. Energy Inst. 2018, DOI:10.1016/j.joei.2018.10.005.
  • Gu, M.; Chu, H.; Liu, F. Effects of Simultaneous Hydrogen Enrichment and Carbon Dioxide Dilution of Fuel on Soot Formation in an Axisymmetric Coflow Laminar Ethylene/Air Diffusion Flame. Combust. Flame. 2016, 166, 216–228.
  • Merchan-Merchan, W.; Saveliev, A. V.; Kennedy, L. A. Carbon Nanostructures in Opposed-Flow Methane Oxy-Flames. Combust. Sci. Technol. 2003, 175, 2217–2236. DOI:10.1080/714923286.
  • Tas, S.; Okyay, F.; Sezen, M.; Plank, H.; Yurum, Y. Production of Carbon Nanotubes over Fe-FSM-16 Catalytic Material: Effect of Acetylene Flow Rate and CVD Temperature. Fuller. Nanotub. Car. N. 2013, 21, 311–325. DOI:10.1080/1536383X.2011.613541.
  • Vander Wal, R. L.; Ticich, T. M.; Curtis, V. E. Diffusion Flame Synthesis of Single-Walled Carbon Nanotubes. Chem. Phys. Lett. 2000, 323, 217–223. DOI:10.1016/S0009-2614(00)00522-4.
  • Baker, R. T. K. Catalytic Growth of Carbon Filaments. Carbon. 1989, 27, 315–323. DOI:10.1016/0008-6223(89)90062-6.
  • Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J. Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene. J. Catal. 1973, 30, 86–95. DOI:10.1016/0021-9517(73)90055-9.
  • Pan, C.; Liu, Y.; Cao, F.; Wang, J.; Ren, Y. Synthesis and Growth Mechanism of Carbon Nanotubes and Nanofibers from Ethanol Flames. Micron. 2004, 35, 461–468. DOI:10.1016/j.micron.2004.01.009.
  • Cataldo, F. A Study on the Thermal Stability to 1000 °C of Various Carbon Allotropes and Carbonaceous Matter Both under Nitrogen and in Air. Fuller. Nanotub. Car. N. 2002, 10, 293–311. DOI:10.1081/FST-120016451.
  • Cataldo, F. The Impact of a Fullerene-Like Concept in Carbon Black Science. Carbon. 2002, 40, 157–162. DOI:10.1016/S0008-6223(01)00167-1.
  • Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751–758. DOI:10.1021/nl904286r.
  • Bokova, S. N.; Obraztsova, E. D.; Grebenyukov, V. V.; Elumeeva, K. V.; Ishchenko, A. V.; Kuznetsov, V. L. Raman Diagnostics of Multi-Wall Carbon Nanotubes with a Small Wall Number. Phys. Stat. Sol. (b) 2010, 247, 2827–2830. DOI:10.1002/pssb.201000237.
  • Langer, J. J.; Golczak, S.; Żabiński, S.; Gibiński, T. Fullerenes and Carbon Nanotubes Formed in an Electric Arc at and above Atmospheric Pressure. Fuller. Nanotub. Car. N. 2004, 12, 593–602. DOI:10.1081/FST-200026944.
  • Taleshi, F. A New Strategy for Increasing the Yield of Carbon Nanotubes by the CVD Method. Fuller. Nanotub. Car. N. 2014, 22, 921–927. DOI:10.1080/1536383X.2012.749456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.