149
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Organic fractal nano-dimensional structures based on fullerene C60

, &
Pages 273-278 | Received 07 Dec 2018, Accepted 14 Jan 2019, Published online: 20 Feb 2019

References

  • Kumar, N.; Kumbhat, S. Carbon-Based Nanomaterials. Essentials in Nanoscience and Nanotechnology. John Wiley & Sons, Inc.: Hoboken, 2016; pp 189–236. DOI: 10.1002/9781119096122.ch5.
  • Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. DOI: 10.3762/bjnano.9.98.
  • Shah, S. B.; Singh, A. Creating Artificial Lymphoid Tissues to Study Immunity and Hematological Malignancies. Curr. Opin. Hematol. 2017, 24, 377–383. DOI: 10.1097/MOH.0000000000000356.
  • Singh, A.; Misra, R.; Mohanty, C.; Sahoo, S. K. Applications of Nanotechnology in Vaccine Delivery. Int. J. Green Nanotechnol. Biomed. 2010, 2, B25–B45. DOI: 10.1080/1943085x.2010.488198.
  • Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.-X.; Mitter, N.; Yu, C.; Middelberg, A. P. J. Nanoparticle Vaccines. Vaccine 2014, 32, 327–337. DOI: 10.1016/j.vaccine.2013.11.069.
  • Davydenko, M. O.; Radchenko, E. O.; Yashchuk, V. M.; Dmitruk, I. M.; Prylutskyy, Y. I.; Matishevska, O. P.; Golub, A. A. Sensibilization of Fullerene C60 Immobilized at Silica Nanoparticles for Cancer Photodynamic Therapy. J. Mol. Liq. 2006, 127, 145–147. DOI: 10.1016/j.molliq.2006.03.046.
  • Orel, V.; Shevchenko, A.; Romanov, A.; Tselepi, M.; Mitrelias, T.; Barnes, C. H. W.; Burlaka, A.; Lukin, S.; Shchepotin, I. Magnetic Properties and Antitumor Effect of Nanocomplexes of Iron Oxide and Doxorubicin. Nanomed. Nanotech. Biol. Med. 2015, 11, 47–55. DOI: 10.1016/j.nano.2014.07.007.
  • Prylutska, S. V.; Skivka, L. M.; Didenko, G. V.; Prylutskyy, Y. I.; Evstigneev, M. P.; Potebnya, G. P.; Panchuk, R. R.; Stoika, R. S.; Ritter, U.; Scharff, P. Complex of C60 Fullerene with Doxorubicin as a Promising Agent in Antitumor Therapy. Nanoscale Res. Lett. 2015, 10, 499.
  • Prylutska, S. V.; Panchuk, R. R.; Gołuński, G.; Skivka, L. M.; Prylutskyy, Y. I.; Hurmach, V.; Skorohyd, N.; Borowik, A.; Woziwodzka, A.; Piosik, J.; et al. Fullerene Enhances Cisplatin Anticancer Activity and Overcomes Tumor Cells Drug Resistance. Nano Res. 2017, 10, 652–671. С60 DOI: 10.1007/s12274-016-1324-2.
  • Bakhtiary, Z.; Saei, A. A.; Hajipour, M. J.; Raoufi, M.; Vermesh, O.; Mahmoudi, M. Targeted Superparamagnetic Iron Oxide Nanoparticles for Early Detection of Cancer: Possibilities and Challenges. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 287–307. DOI: 10.1016/j.nano.2015.10.019.
  • Li, Y.; Humphries, B.; Yang, C.; Wang, Z. Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer—Challenges and Opportunities. Nanomaterials 2018, 8, 361. DOI: 10.3390/nano8060361.
  • Mohajeri, A.; Omidvar, A. Fullerene-based Materials for Solar Cell Applications: Design of Novel Acceptors for Efficient Polymer Solar Cells—A DFT Study. Phys. Chem. Chem. Phys. 2015, 17, 22367–22376. DOI: 10.1039/C5CP02453F.
  • Xiao, S.; Zhang, Q.; You, W. Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report. Adv. Mater. 2017, 29, 1601391. DOI: 10.1002/adma.201601391.
  • Xiao, B.; Zhang, M.; Yan, J.; Luo, G.; Gao, K.; Liu, J.; You, Q.; Wang, H.-B.; Gao, C.; Zhao, B.; et al. High Efficiency Organic Solar Cells Based on Amorphous Electron-Donating Polymer and Modified Fullerene Acceptor. Nano Energy 2017, 39, 478–488. DOI: 10.1016/j.nanoen.2017.07.034.
  • Matyshevska, O. P.; Yu. Karlash, A.; Shtogun, Y. V.; Benilov, A.; Yu, K.; Gorchinskyy, K. O.; Buzaneva, E. V.; Prylutskyy, Y. I.; Scharff, P. Self-Organizing DNA/carbon Nanotube Molecular Films. Mater. Sci. Engineer. C. 2001, 15, 249–252. DOI: 10.1016/S0928-4931(01)00309-5.
  • U.; Ritter, N. G.; Tsierkezos, Y. I.; Prylutskyy, L.; Yu, Matzui, V. O.; Gubanov, M. M.; Bilyi, M. O. Davydenko, Structure-electrical Resistivity Relationship of N-Doped Multi-Walled Carbon Nanotubes. J. Mater. Sci. 2012, 47, 2390–2395. DOI: 10.1007/s10853-011-6059-6.
  • Lin, Y.-C.; Cheng, H.-W.; Su, Y.-W.; Lin, B.-H.; Lu, Y.-J.; Chen, C.-H.; Chen, H.-C.; Yang, Y.; Wei, K.-H. Molecular Engineering of Side Chain Architecture of Conjugated Polymers Enhances Performance of Photovoltaics by Tuning Ternary Blend Structures. Nano Energy 2018, 43, 138–148. DOI: 10.1016/j.nanoen.2017.11.016.
  • Varghese, S. S.; Varghese, S. H.; Swaminathan, S.; Singh, K. K.; Mittal, V. Two-dimensional Materials for Sensing: Graphene and Beyond. Electronics 2015, 4, 651–687. DOI: 10.3390/electronics4030651.
  • Diao, Z.; Sauer, V. T. K.; Hiebert, W. K. Integrated on-Chip Nano-Optomechanical Systems. Int. J. Hi. Spe. Ele. Syst. 2017, 26, 1–22. DOI: 10.1142/S0129156417400055.
  • Nasir, S.; Hussein, M. Z.; Zainal, Z.; Yusof, N. A. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials 2018, 11, 295. DOI: 10.3390/ma11020295.
  • Ravichandran, R. Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. Int. J. Green Nanotechnol. Phys. Chem. 2010, 1, P72–P96. DOI: 10.1080/19430871003684440.
  • Yi, X.; Chew, S.-X.; Song, S.; Nguyen, L.; Minasian, R. Integrated Microwave Photonics for Wideband Signal Processing. Photonics 2017, 4, 46–61. DOI: 10.3390/photonics4040046.
  • Notarianni, M.; Liu, J.; Vernon, K.; Motta, N. Synthesis and Applications of Carbon Nanomaterials for Energy Generation and Storage. Beilstein J. Nanotechnol. 2016, 7, 149–196. DOI: 10.3762/bjnano.7.17.
  • Raj, S.; Jose, S.; Sumod, U. S.; Sabitha, M. Nanotechnology in Cosmetics: Opportunities and Challenges. J. Pharm. Bioall. Sci. 2012, 4, 186–193. DOI: 10.4103/0975-7406.99016.
  • Mukherjee, A.; Majumdar, S.; Servin, A. D.; Pagano, L.; Dhankher, O. P.; White, J. C. Carbon Nanomaterials in Agriculture: A Critical Review. Front. Plant Sci. 2016, 7, 172.DOI: 10.3389/fpls.2016.00172.
  • Jullien, R. Fractal Aggregates. Comm. Cond. Mat. Phys. 1987, 13, 177–205.
  • Olemskoĭ, A. I.; Flat, A. Y. Application of Fractals in Condensed-Matter Physics. Phys-Usp. 1993, 36, 1087–1128. DOI: 10.1070/PU1993v036n12ABEH002208.
  • Yu, I.; Prylutskyy, V. V.; Cherepanov, M. P.; Evstigneev, O. A.; Kyzyma, V. I.; Petrenko, V. I.; Styopkin, L. A.; Bulavin, N. A.; Davidenko, D.; Wyrzykowski, A.; Woziwodzka, J.; Piosik, R.; Kaz, Mierkiewicz, U Ritter, Structural Self-Organization of C60 and Cisplatin in Physiological Solution. Phys. Chem. Chem. Phys. 2015, 17, 26084–26092. DOI: 10.1039/C5CP02688A.
  • Luo, Z.; Marson, D.; Ong, Q. K.; Loiudice, A.; Kohlbrecher, J.; Radulescu, A.; Krause-Heuer, A.; Darwish, T.; Balog, S.; Buonsanti, R.; et al. Quantitative 3D Determination of Self-assembled Structures on Nanoparticles Using Small Angle Neutron Scattering. Nat. Commun. 2018, 9, 1343. DOI: 10.1038/s41467-018-03699-7.
  • Hollamby, M. J.; Smith, C. F.; Britton, M. M.; Danks, A. E.; Schnepp, Z.; Grillo, I.; Pauw, B. R.; Kishimura, A.; Nakanish, T. The Aggregation of an Alkyl–C60 Derivative as a Function of Concentration, Temperature and Solvent Type. Phys. Chem. Chem. Phys. 2018, 20, 3373–3380. DOI: 10.1039/C7CP06348B.
  • Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Zotov, A. V.; Saranin, A. A. Adsorption and Self-assembly of Fullerenes on Si(111) 3×3-Ag: C60 Versus C70. Surf. Sci. 2016, 653, 138–142. DOI: 10.1016/j.susc.2016.06.016.
  • Pham, V. D.; Repain, V.; Chacon, C.; Bellec, A.; Girard, Y.; Rousset, S.; Campidelli, S.; Lauret, J. S.; Voisin, C.; Terrones, M.; et. al. Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate Investigated by Scanning Tunneling Microscopy. J. Phys. Chem. C. 2017, 121, 24264–24271. DOI: 10.1021/acs.jpcc.7b06890.
  • Skamrova, G. B.; Laponogov, I.; Buchelnikov, A. S.; Shckorbatov, Y. G.; Prylutska, S. V.; Ritter, U.; Prylutskyy, Y. I.; Evstigneev, M. P. Interceptor Effect of C60 Fullerene on the in Vitro Action of Aromatic Drug Molecules. Eur. Biophys. J. 2014, 43, 265–276.
  • Shibata, M.; Uchihashi, T.; Ando, T.; Yasuda, R. Long-tip High-speed Atomic Force Microscopy for Nanometer-scale Imaging in Live Cells. Sci. Rep. 2015, 5, 8724. DOI: 10.1038/srep08724.
  • Prylutskyy, Y. I.; Evstigneev, M. P.; Cherepanov, V. V.; Kyzyma, O. A.; Bulavin, L. A.; Davidenko, N. A.; Scharff, P. Structural Organization of С60 Fullerene, doxorubicin and Their Complex in Physiological Solution as Promising Antitumor Agents. J. Nanopart. Res. 2015, 17, 45–49.
  • Bakhramov, S. A.; Kokhkharov, A. M.; Zakhidov, E. A.; Makhmanov, U. K.; Gofurov, S. P. Clusterization of Fullerene C60/70 Molecules in Solutions and Its Influence on the Optical and the Nonlinear Optical Properties of Solutions. J. Korean Phys. Soc. 2014, 64, 1494–1499. DOI: 10.3938/jkps.64.1494.
  • Makhmanov, U. K.; Ismailova, O. B.; Kokhkharov, A. M.; Zakhidov, E. A.; Bakhramov, S. A. Features of Self-aggregation of C60 Molecules in Toluene Prepared by Different Methods. Phys. Lett. A. 2016, 380, 2081–2084. DOI: 10.1016/j.physleta.2016.04.030.
  • Semenov, K. N.; Charykov, N. A.; Keskinov, V. A.; Piartman, A. K.; Blokhin, A. A.; Kopyrin, A. A. Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data 2010, 55, 13–36. DOI: 10.1021/je900296s.
  • Sander, L. M. Diffusion-limited Aggregation: A Kinetic Critical Phenomenon? Contemp. Phys. 2000, 41, 203–218. DOI: 10.1080/001075100409698.
  • Lattuada, M. Predictive Model for Diffusion-Limited Aggregation Kinetics of Nanocolloids under High Concentration. J. Phys. Chem. B. 2012, 116, 120–129. DOI: 10.1021/jp2097839.
  • Hilburn, M. E.; Murdianti, B. S.; Maples, R. D.; Williams, J. S.; Damron, J. T.; Kuriyavar, S. I.; Ausman, K. D. Synthesizing Aqueous Fullerene Colloidal Suspensions by New Solvent-Exchange Methods. Colloids Surf. A. 2012, 401, 48–53. DOI: 10.1016/j.colsurfa.2012.03.010.
  • Mchedlov-Petrossyan, N. O. Fullerenes in Liquid Media: An Unsettling Intrusion into the Solution Chemistry. Chem. Rev. 2013, 113, 5149–5193. DOI: 10.1021/cr3005026.
  • Ritter, U.; Prylutskyy, Yu, I.; Evstigneev, M. P.; Davidenko, N. A.; Cherepanov, V. V.; Senenko, A. I.; Marchenko, O. A.; Naumovets, A. G. Structural Features of Highly Stable Reproducible C60 Fullerene Aqueous Colloid Solution Probed by Various Techniques. Fullerenes Nanotubes Carbon Nanostruct. 2015, 23, 530–534. DOI: 10.1080/1536383X.2013.870900.
  • Adamenko, I. I.; Bulavin, L. A.; Moroz, K. O.; Prylutskyy, Y. I.; Scharff, P. Equation of State for C60 Toluene Solution. J. Mol. Liq. 2003, 105, 149–155. DOI: 10.1007/s10765-005-5578-2.
  • Bulavin, L. A.; Adamenko, I. I.; Yashchuk, V. M.; Ogul'chansky, T. Y.; Prylutskyy, Y. I.; Durov, S. S.; Scharff, P. Self-organization C60 Nanoparticles in Toluene Solution. J. Mol. Liq. 2001, 93, 187–191. DOI: 10.1016/S0167-7322(01)00228-8.
  • Prilutski, Y.; Durov, S.; Bulavin, L.; Pogorelov, V.; Astashkin, Y.; Yashchuk, V.; Ogul'chansky, T.; Buzaneva, E.; Andrievsky, G. Study of Structure of Colloidal Particles of Fullerenes in Water Solution. Mol. Cryst. Liq. Cryst. 1998, 324, 65–70. DOI: 10.1080/10587259808047135.
  • Adamenko, I. I.; Moroz, K. O.; Prylutskyy, Yu, I.; Eklund, P.; Scharff, P.; Braun, T. Equation of State for C60 Fullerene Aqueous Solutions. Int. J. Thermophys. 2005, 26, 795–805. DOI: 10.1007/s10765-005-5578-2.
  • Voronin, D. P.; Buchelnikov, A. S.; Kostjukov, V. V.; Khrapatiy, S. V.; Wyrzykowski, D.; Piosik, J.; Prylutskyy, Y. I.; Ritter, U.; Evstigneev, M. P. Evidence of Entropically Driven C60 Fullerene Aggregation in Aqueous Solution. J. Chem. Phys. 2014, 140, 104909–104905. DOI: 10.1063/1.4867902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.