153
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Nanostructures of graphene oxide modified with ZnO: synthesis and photocatalyst evaluation under sunlight

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 632-639 | Received 30 Apr 2019, Accepted 01 Jun 2019, Published online: 18 Jun 2019

References

  • Park, C. J.; Choi, D.-K.; Yoo, J.; Yi, G.-C.; Lee, C. J. Enhanced Field Emission Properties from Well-Aligned Zinc Oxide Nanoneedles Grown the Au/Ti/n-Si Substrate. Appl. Phys. Lett. 2007, 90, 083107-1-083107-3. DOI: 10.1063/1.2643979.
  • Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J. Field Emission from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature. Appl. Phys. Lett. 2002, 81, 3648–3650. DOI: 10.1063/1.1518810.
  • Shi, Q.; Wang, S.; Wu, H.; Yu, M.; Su, X.; Ma, F.; Jiang, J. Synthesis and Characterizations of V2O5/ZnO Nanocomposites and Enhanced Photocatalytic Activity. Ferroeletrics 2018, 523, 74–81. DOI: 10.1080/00150193.2018.1391563.
  • Chang, H.; Sun, Z.; Ho, K. Y.-F.; Tao, X.; Yan, F.; Kwok, W.-M.; Zheng, Z. A Highly Sensitive Ultraviolet Sensor Based on a Facile in Situ Solution-Grown ZnO Nanorod/Graphene Heterostructure. Nanoscale 2011, 3, 258–264. DOI: 10.1039/C0NR00588F.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Zhang, N.; Zhang, Y.; Xu, Y.-J. Recent Progress on Graphene-Based Photocatalyst: current Status and Future Perspectives. Nanoscale 2012, 4, 5792. DOI: 10.1039/c2nr31480k.
  • Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts . Chem. Soc. Rev. 2012, 41, 782–796. DOI: 10.1039/c1cs15172j.
  • Chen, Z.; Zhang, N.; Xu, Y.-J. Synthesis of Graphene–ZnO Nanorod Nanocomposites with Improved Photoactivity and anti-Photocorrosion. Cryst. Eng. Comm. 2013, 15, 3022–3030. DOI: 10.1039/c3ce27021a.
  • Atchudan, R.; Edison, T. N. J. I.; Perumal, S.; Karthikeyan, D.; Lee, Y. R. Facile Synthesis of Zinc Oxide Nanoparticles Decorated Graphene Oxide Composite via Solvothermal Route and Their Photocatalytic Activity on Methylene Blue Degradation. J. Photochem. B: Biol. 2016, 162, 500–510. DOI: 10.1016/j.jphotobiol.2016.07.019.
  • Hongqi, S.; Shizhen, L.; Shaomin, L.; Shaobin, W. A Comparative Study of Reduced Graphene Oxide Modified TiO2, ZnO and Ta2O5 in Visible Light Photocatalytic/Photochemical Oxidation of Methylene Blue. Appl. Catal. B: Environ. 2013, 146, 162–168. http://dx.doi.org/10.1016/j.apcatb.2013.03.027
  • Li, B.; Cao, H. ZnO@Graphene Composite with Enhanced Performance for the Removal of Dye from Water. J. Mater. Chem. 2011, 21, 3346–3349. DOI: 10.1039/C0JM03253K.
  • Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study. Appl. Catal. B: Environ. 2011, 101, 382–387. DOI: 10.1016/j.apcatb.2010.10.007.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. DOI: 10.1021/ja01539a017.
  • Macclesh-del-Pino, L.; Morales-Cepeda, A. B.; García, A. R.; Lozano, R. Modification of Graphene Oxide with Titanium Dioxide by Alcoholic Reduction. Fuller. Nanotub. Carbon Nanostrut. 2018, 26, 545–550. DOI: 10.1080/1536383X.2018.1457025.
  • McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19, 4396–4404. DOI: 10.1021/cm0630800.
  • Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.; Chhowalla, M.; Shenoy, V. Structural Evolution during the Reduction of Chemically Derived Graphene Oxide. Nature Chem. 2010, 2, 581–587. DOI: 10.1038/nchem.686.
  • Wu, J.; Zhang, K.; Mao, L.; Zhang, L.; Chan, H.; Zhao, X. Surfactant-Intercalated, Chemically Reduced Graphene Oxide for High Performance Supercapacitor Electrodes. J. Mater. Chem. 2001, 21, 7302. DOI: 10.1039/c1jm00007a.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010, 4, 4806–4814. DOI: 10.1021/nn1006368.
  • Chang, Y.; Mu, S.-J.; Xiao, L.-H.; Liu, D.; Hu, T.; Tang, H.-B. Xray Diffraction Pattern of Graphite Oxide. Chin. Phys. Lett 2013, 30, 96101–96103.
  • Prasopporn, J.; Wanichaya, M.; Russameeruk, N. K.; Wisanu, P. Characterization of ZnO:Sn Nanopowders Synthesized by co-Precipitation Method. Energy Procedia 2014, 56, 560–565.
  • Ghosh, S. R.; Sankar, G.; Vandana, V. Curious Case of Bactericidal Action of ZnO. Journal of Nanoscience 2014, 2014, 1–8. DOI: 10.1155/2014/343467.
  • Dnyaneshwar, R. S.; Ramdas, A. P.; Popat, S. T. Synthesis of ZnO Photocatalyst via ZnO2 Precursor and Its Application for Dye Degradation from Effluent under Solar Irradiation. Desalin. Water Treat. 2015, 57, 1–8. DOI: 10.1080/19443994.2015.1079248.
  • Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of Defect Densities in Reduced Graphene Oxide. Carbon 2012, 50, 3666–3673. DOI: 10.1016/j.carbon.2012.03.039.
  • Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.
  • Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. DOI: 10.1038/nnano.2013.46.
  • Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewicz, G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials 2018, 11, 1050. DOI: 10.3390/ma11071050.
  • Sun, M.; Hao, W.; Wang, C.; Wang, T. A Simple and Green Approach for Preparation of ZnO2 and ZnO under Sunlight Irradiation. Chem. Phys. Lett. 2007, 443, 342–346. DOI: 10.1016/j.cplett.2007.06.098.
  • Chen, B.; Hou, N. G.; Chen, C. Raman and Photoluminescence Spectroscopy Investigations of ZnO Nanostructures. J. Exp. Nanosci. 2007, 2, 57–62. DOI: 10.1080/17458080601013512.
  • Shih-Shou, L.; Huang, D. Morphological Variation and Raman Spectroscopy of ZnO Hollow Microspheres Prepared by a Chemical Colloidal Process. J. Am. Chem. Soc 2004, 126, 16744–16746.
  • Yu, Y.; Yu, C.; Cho-Yin, C.; Yan-Ke, C.; Jin-Cai, Z.; Ding, L.; Wei-Kun, G.; Wong, P. K. Enhancement of Adsorption and Photocatalytic Activity of TiO2 by Using Carbon Nanotubes for the Treatment of Azo Dye. Appl. Catal. B: Environ. 2005, 61, 1–11. DOI: 10.1016/j.apcatb.2005.03.008.
  • Zhou, W.; Kai, P.; Yang, Q.; Sun, F.; Tian, C.; Zhiyu, R.; GuoHui, T.; Honggang, F. Photodegradation of Organic Contamination in Wastewaters by Bonding TiO2/Single-Walled Carbon Nanotubes Composites with Enhanced Photocatalytic Activity. Chemosphere 2010, 81, 555–561. DOI: 10.1016/j.chemosphere.2010.08.059.
  • Uekawa, N.; Mochizuki, N.; Kajiwara, J.; Mori, F.; Wu, Y. J.; Kakegawa, K. Nonstoichiometric Properties of Zinc Oxide Nanoparticles Prepared by Decomposition of Zinc Peroxide. Phys. Chem. Chem. Phys. 2003, 5, 929–934. DOI: 10.1039/b210990e.
  • Adnan, A.; Kamran, A.; Young, J.; Jeongdai, K.; Hyun, C. Rapid Fabrication of Graphene/ZnO Composite Thin Film. Jpn. Soc. Appl. Phys. 2014, 53, 690–756.
  • Porter, J. F.; Li, Y.; Chan, C. K. The Effect of Calcination on the Microstructural Characteristics and Photoreactivity of DEGUSSA P-25 TiO2. J. Mater. Sci. 1999, 34, 1523–1531. DOI: 10.1023/A:1004560129347.
  • Basko, D. M.; Aleiner, I. L. Interplay of Coulomb and Electron-Phonon Interactions in Graphene. Phys. Rev. 2008, B77, 041409(R).
  • Yoon, D.; Moon, H.; Son, Y.-W.; Choi, J.; Park, B.; Cha, Y. Interference Effect on Raman Spectrum of Graphene on SiO2/Si. Phys. Rev. 2009, 80, 125422.
  • Najafi, F.; Rajabi, M. Thermal Gravity Analysis for Study of Stability of Graphene Oxide-Glycine Nanocomposites. Int. Nano Lett. 2015, 5, 187–190. DOI: 10.1007/s40089-015-0154-7.
  • Nehal, A. S.; El-Kemary, M.; Ebtisam, M. I. Synthesis and Characterization of ZnO Nanoparticles via Precipitation Method: Effect of Annealing Temperature on Particle Size. Nanosc. Nanotech. 2015, 5, 82–88.
  • Giannakoudakis, D. A.; Florent, M.; Wallace, R.; Secor, J.; Karwacki, C.; Bandosz, T. J. Zinc Peroxide Nanoparticles: surface, Chemical and Optical Properties and the Effect of Thermal Treatment on the Detoxification of Mustard Gas. Appl. Catal. B: Environ. 2017, 226, 429–440.https://doi.org/10.1016/j.apcatb.2017.12.068.
  • Elen, K.; Kelchtermans, A.; Van den Rul, H.; Peeters, R.; Mullens, J.; Hardy, A.; Bael, M. K. Comparison of Two Novel Solution-Based Routes for the Synthesis of Equiaxed ZnO Nanoparticles. J. Nanomater. 2011, 2011, 6. DOI: 10.1155/2011/390621.
  • Ruoff, R. S.; Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhemmes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Wang, X.; Xu, C.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co3O4 Nanoparticles onto Exfoliated Graphite Oxide Sheets. J. Mater. Chem. 2008, 19, 5625–5629. DOI: 10.1039/b809712g.
  • Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials? ACS Nano 2010, 4, 7303–7314. DOI: 10.1021/nn1024219.
  • Wang, S.; Liu, S.; Sun, H.; Liu, S. Graphene Facilitated Visible Light Photodegradation of Methylene Blue over Titanium Dioxide Photocatalyst. Chem. Eng. J. 2013, 214, 298–303. DOI: 10.1016/j.cej.2012.10.058.
  • Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study. Appl. Catal. B: Environ. 2011, 101, 382–387. DOI: 10.1016/j.apcatb.2010.10.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.