351
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Synergistic strengthening effect of alumina anchored graphene nanosheets hybrid structure in aluminum matrix composites

, , ORCID Icon, , , ORCID Icon & show all
Pages 640-649 | Received 07 May 2019, Accepted 01 Jun 2019, Published online: 22 Jun 2019

References

  • Manrique, P. H.; Yan, S.; Lin, F.; Hong, Q. Microstructure and Mechanical Behavior of Aluminum Matrix Composites Reinforced with Graphene Oxide and Carbon Nanotubes. J. Mater. Sci. 2017, 52, 13466–13477. DOI: 10.1007/s10853-017-1450-6.
  • Ibrahim, I. A.; Mohamed, F. A.; Lavernia, E. J. Particulate Reinforced Metal Matrix Composites: A Review. J. Mater. Sci. 1991, 26, 1137–1156. DOI: 10.1007/BF00544448.
  • Kvashnin, A. G.; Sorokin, P. B.; Kvashnin, D. G. The Theoretical Study of Mechanical Properties of Graphene Membranes. Full. Nanot. Carbon Nanost 2010, 18, 497–500. DOI: 10.1080/1536383X.2010.488160.
  • Ciplak, Z.; Yildiz, N.; Calimli, A. Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Full. Nanotub. Carbon Nanostrut. 2014, 23, 361–370. DOI: 10.1080/1536383X.2014.894025.
  • Baig, Z.; Mamat, O.; Mustapha, M.; Sarfraz, M. Influence of Surfactant Type on the Dispersion State and Properties of Graphene Nanoplatelets Reinforced Aluminum Matrix Nanocomposites. Full. Nanotub. Carbon Nanostrut. 2017, 25, 545–557. DOI: 10.1080/1536383X.2017.1362396.
  • Li, Z.; Fan, G.; Guo, Q.; Li, Z.; Su, Y.; Zhang, D. Synergistic Strengthening Effect of Graphene-Carbon Nanotube Hybrid Structure in Aluminum Matrix Composites. Carbon 2015, 95, 419–427. DOI: 10.1016/j.carbon.2015.08.014.
  • Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H. T. Surface Functionalized Alumina Nanoparticle Filled Polymeric Nanocomposites with Enhanced Mechanical Properties. J. Mater. Chem. 2006, 16, 2800–2808. DOI: 10.1039/b603020c.
  • Zhang, X.; Zheng, J.; Fang, H.; Zhang, Y.; Bai, S.; He, G. Al2O3/Graphene Reinforced Bio-Inspired Interlocking Polyurethane Composites with Superior Mechanical and Thermal Properties for Solid Propulsion Fuel. Compos. Sci. Technol. 2018, 167, 42–52. DOI: 10.1016/j.compscitech.2018.07.029.
  • Zhang, Y.; Yu, W.; Zhang, L.; Yin, J.; Wang, J.; Xie, H. Thermal Conductivity and Mechanical Properties of Low-Density Silicone Rubber Filled with Al2O3 and Graphene Nanoplatelets. J. Thermal Sci. Eng. Appl. 2017, 10, 011014–011015. DOI: 10.1115/1.4036797.
  • Jiang, L.; Fan, G.; Li, Z.; Kai, X.; Zhang, D.; Chen, Z.; Humphries, S.; Heness, G.; Yeung, W. Y. An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder. Carbon. 2011, 49, 1965–1971. DOI: 10.1016/j.carbon.2011.01.021.
  • Hodder, K. J.; Izadi, H.; McDonald, A. G.; Gerlich, A. P. Fabrication of Aluminum-Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing. Mater. Sci. Eng. A 2012, 556, 114–121. DOI: 10.1016/j.msea.2012.06.066.
  • Zabihi, M.; Toroghinejad, M. R.; Shafyei, A. Application of Powder Metallurgy and Hot Rolling Processes for Manufacturing Aluminum/Alumina Composite Strips. Mater. Sci. Eng. A 2013, 560, 567–574. DOI: 10.1016/j.msea.2012.09.103.
  • Torabi, P. M.; Ezatpour, H. R.; Ebrahimi, G. R. High Mechanical Efficiency, Microstructure Evaluation and Texture of Rheo-Casted and Extruded AZ80-Ca Alloy Reinforced with Processed Al2O3/GNPs Hybrid Reinforcement. Mater. Chem. Phys. 2018, 218, 246–255. DOI: 10.1016/j.matchemphys.2018.07.054.
  • Zhang, Y.; Li, X. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness. Nano Lett. 2017, 17, 6907–6915. DOI: 10.1021/acs.nanolett.7b03308.
  • Zhang, X.; Shi, C.; Liu, E.; Zhao, N.; He, C. Effect of Interface Structure on the Mechanical Properties of Graphene Nanosheets Reinforced Copper Matrix Composites. ACS Appl. Mater. Interfaces 2018, 10, 37586–37601. DOI: 10.1021/acsami.8b09799.
  • Sun, Z.; Raji, A.-R. O.; Zhu, Y.; Xiang, C.; Yan, Z.; Kittrell, C.; Samuel, E. L. G.; Tour, J. M. Large-Area Bernal-Stacked Bi-, Tri-, and Tetralayer Graphene. ACS Nano 2012, 6, 9790–9796. DOI: 10.1021/nn303328e.
  • Liu, X. H.; Li, J. J.; Liu, E. Z.; He, C. N.; Shi, C. S.; Zhao, N. Q. Towards Strength-Ductility Synergy with Favorable Strengthening Effect through the Formation of a Quasi-Continuous Graphene Nanosheets Coated Ni Structure in Aluminum Matrix Composite. Mater. Sci. Eng. A 2019, 748, 52–58. DOI: 10.1016/j.msea.2019.01.046.
  • Muschik, T.; Ruhle, M. High-Resolution Transmission Electron Microscopy Studies of Structural Modifications in Pd-Al2O3 Interfaces. Philos. Mag. A 1992, 65, 363–388. DOI: 10.1080/01418619208201528.
  • Hahn, K. H.; Vedula, K. Room Temperature Tensile Ductility in Polycrystalline B2NiAl. Scr. Metall. 1989, 23, 7–12. DOI: 10.1016/0036-9748(89)90083-5.
  • Li, Z.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D.-B.; Su, Y.; Zhang, J.; Zhang, D. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure. Nano Lett. 2015, 15, 8077–8083. DOI: 10.1021/acs.nanolett.5b03492.
  • Kwon, H.; Estili, M.; Akagi, K.; Miyazaki, T. T.; Kawasaki, A. Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites. Carbon 2009, 47, 570–577. DOI: 10.1016/j.carbon.2008.10.041.
  • Park, J. G.; Keum, D. H.; Lee, Y. H. Strengthening Mechanisms in Carbon Nanotube-Reinforced Aluminum Composites. Carbon 2015, 95, 690–698. DOI: 10.1016/j.carbon.2015.08.112.
  • Liao, J.; Tan, M. A Simple Approach to Prepare Al/CNT Composite: Spread-Dispersion (SD) Method. Mater. Lett. 2011, 65, 2742–2744. DOI: 10.1016/j.matlet.2011.05.067.
  • Boostani, A. F.; Jiang, Z. Y. Strengthening Mechanisms of Graphene Sheets in Aluminum Matrix Nanocomposites. Mater. Des. 2015, 88, 983–989. DOI: 10.1016/j.matdes.2015.09.063.
  • Zhang, H.; Xu, C.; Xiao, W.; Ameyama, K.; Ma, C. Enhanced Mechanical Properties of Al5083 Alloy with Graphene Nanoplates Prepared by Ball Milling and Hot Extrusion. Mater. Sci. Eng. A 2016, 658, 8–15. DOI: 10.1016/j.msea.2016.01.076.
  • Chen, B.; Shen, J.; Ye, X.; Jia, L.; Li, S.; Umeda, J.; Takahashi, M.; Kondoh, K. Length Effect of Carbon Nanotubes on the Strengthening Mechanismsin Metal Matrix Composites. Acta Mater. 2017, 140, 317–325. DOI: 10.1016/j.actamat.2017.08.048.
  • Carol, I.; Prat, P. C.; López, C. M. Normal/Shear Cracking Model: application to Discrete Crack Analysis. J. Eng. Mech. 1997, 123, 765–773. DOI: 10.1061/(ASCE)0733-9399(1997)123:8(765).
  • Munõz-Morris, M. A.; Garcia Oca, C. G.; Morris, D. G. An Analysis of Strengthening Mechanisms in a Mechanically Alloyed, Oxide Dispersion Strengthened Iron Aluminized Intermetallic. Acta Mater. 2002, 50, 2825–2836. DOI: 10.1016/S1359-6454(02)00101-5.
  • Yoo, S. J.; Han, S. H.; Kim, W. J. Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes. Scr. Mater. 2013, 68, 711–714. DOI: 10.1016/j.scriptamat.2013.01.013.
  • George, R.; Kashyap, K. T.; Rahul, R.; Yamdagni, S. Strengthening in Carbon Nanotube/Aluminum (CNT/Al) Composites. Scr. Mater. 2005, 53, 1159–1163. DOI: 10.1016/j.scriptamat.2005.07.022.
  • Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening Behavior of Few-Layered Graphene/Aluminum Composites. Carbon 2015, 82, 143–151. DOI: 10.1016/j.carbon.2014.10.044.
  • Han, B. O.; Mohamed, F. A.; Lee, Z.; Nutt, S. R.; Lavernia, E. J. Mechanical Properties of an Ultrafine-Grained Al-7.5 Pct Mg Alloy. Metall. Mater. Trans. A 2003, 34, 603–613. DOI: 10.1007/s11661-003-0095-z.
  • Guo, B.; Ni, S.; Yi, J.; Shen, R.; Tang, Z.; Du, Y.; Song, M. Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced Pure Aluminum Composites Synthesized by Spark Plasma Sintering and Hot Rolling. Mater. Sci. Eng. A 2017, 698, 282–288. DOI: 10.1016/j.msea.2017.05.068.
  • Zhou, W.; Yamaguchi, T.; Kikuchi, K.; Nomura, N.; Kawasaki, A. Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites. Acta Mater. 2017, 125, 369–376. DOI: 10.1016/j.actamat.2016.12.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.