343
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Carbon nanotube/graphene composites as thermal interface materials for electronic devices

, &
Pages 907-913 | Received 17 Jul 2019, Accepted 23 Aug 2019, Published online: 03 Sep 2019

References

  • Miao, F.; Cheng, Y. Y.; He, Y.; He, Q. Y.; Li, Y. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone. Sensors 2015, 15, 11465–11484. DOI:10.3390/s150511465.
  • Zhang, D. M.; Liu, Q. J. Biosensors and Bioelectronics on Smartphone for Portable Biochemical Detection. Biosensors Bioelectron. 2016, 75, 273–284. DOI:10.1016/j.bios.2015.08.037.
  • Kumar, R.; Bajaj, R.; Pawar, L. Advanced Replicated Hardware Architecture for Smartphones and Smart Devices. Int. J. Comput. Intell. Res. 2017, 13, 805–813.
  • Kuss, D. J.; Kanjo, E.; Crook-Rumsey, M.; Kibowski, F.; Wang, G. Y.; Sumich, A. Problematic Mobile Phone Use and Addiction across Generations: The Roles of Psychopathological Symptoms and Smartphone Use. J. Technol. Behav. Sci. 2017, 8, 1–9. DOI:10.1007/s41347-017-0041-3.
  • Kwon, M.; Lee, J. Y.; Won, W. Y.; Park, J. W.; Min, J. A. Development and Validation of a Smartphone Addiction Scale (SAS). PLos One. 2013, 8, 1–7. DOI:10.1371/journal.pone.0056936.
  • Du, B. X.; Li, J.; Du, W. Dynamic Behavior of Surface Charge on Direct- Fluorinated Polyimide Films. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 947–954.
  • Gwinn, J. P.; Webb, R. L. Performance and Testing of Thermal Interface Materials. Microelectron. J. 2003, 34, 215–222. DOI:10.1016/S0026-2692(02)00191-X.
  • Chano, K.; Poliskie, G. M.; Fregoso, J. Rheology of Thermal Interface Materials Composed of Silicone Gels. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 217–220.
  • Zhu, J. Y.; Tang, S. Y.; Khoshmanesh, K.; Ghorbani, K. An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets. ACS Appl. Mater. Interfaces 2016, 8, 2173–2180. DOI:10.1021/acsami.5b10769.
  • Chung, D. D. L. Thermal Interface Materials. J. Mater. Eng. Perform. 2001, 10, 56–59. DOI:10.1361/105994901770345358.
  • Prasher, R.; Chiu, C. P. Thermal Interface Materials. In Materials for Advanced Packaging; Lu, D., Wong, C., Eds.; Springer: Cham, 2017; pp 511–535.
  • Prasher, R. Thermal Interface Materials: historical Perspective, Status, and Future Directions. Proc. IEEE 2006, 94, 1571–1586. DOI:10.1109/JPROC.2006.879796.
  • Nikkeshi, S.; Kudo, M.; Masuko, T. Dynamic Viscoelastic Properties and Thermal Properties of Ni Powder-Epoxy Resin Composites. J. Appl. Polym. Sci. 1998, 69, 2593–2598. DOI:10.1002/(SICI)1097-4628(19980926)69:13<2593::AID-APP9>3.0.CO;2-5.
  • Hill, R. H.; Supancic, P. H. Thermal Conductivity of Platelet-Filled Polymer Composites. J. Am. Ceram. Soc. 2004, 85, 851–857. DOI:10.1111/j.1151-2916.2002.tb00183.x.
  • Li, L.; Chung, D. D. L. Thermally Conducting Polymer-Matrix Composites Containing Both AIN Particles and SiC Whiskers. J. Electron. Mater. 1994, 23, 557–564. DOI:10.1007/BF02670659.
  • Lee, E. S.; Lee, S. M.; Shanefield, D. J.; Cannon, W. R. Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin. J. Am. Ceramic Soc. 2008, 91, 1169–1174. DOI:10.1111/j.1551-2916.2008.02247.x.
  • Chen, Y. M.; Ting, J. M. Ultra High Thermal Conductivity Polymer Composites. Carbon 2002, 40, 359–362. DOI:10.1016/S0008-6223(01)00112-9.
  • Wong, C. P.; Bollampally, R. S. Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled with Ceramic Particles for Electronic Packaging. J. Appl. Polym. Sci. 1999, 74, 3396–3403. DOI:10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3.
  • Kume, S.; Yamada, I.; Watari, K.; Harada, I.; Mitsuishi, K. High-Thermal-Conductivity AlN Filler for Polymer/Ceramics Composites. J. Am. Ceram. Soc. 2009, 92, S153–S156. DOI:10.1111/j.1551-2916.2008.02650.x.
  • Zhao, L.; Liu, H.; Chen, X.; Chu, S.; Liu, H.; Lin, Z.; Li, Q.; Chu, G.; Zhang, H. Liquid Metal Nano/Micro-Channels as Thermal Interface Materials for Efficient Energy Saving. J. Mater. Chem. C. 2018, 6, 10611–10617. DOI:10.1039/C8TC03417F.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI:10.1038/354056a0.
  • Berber, S.; Kwon, Y. K.; Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. DOI:10.1103/PhysRevLett.84.4613.
  • Cao, J. X.; Yan, X. H.; Xiao, Y.; Ding, J. W. Thermal Conductivity of Zigzag Single-Walled Carbon Nanotubes: Role of the Umklapp Process. Phys. Rev. B. 2004, 69, 1–4. DOI:10.1103/PhysRevB.69.073407.
  • Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 2001, 87, 1–4. DOI:10.1103/PhysRevLett.87.215502.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI:10.1126/science.1102896.
  • Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett. 2008, 92, 151911–151913. DOI:10.1063/1.2907977.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI:10.1021/nl0731872.
  • Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B. 2006, 110, 8535–8539. DOI:10.1021/jp060936f.
  • Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.; Bielawski, C. W.; Ruoff, R. S. Polymer Brushes via Controlled, Surface‐Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromol. Rapid Commun. 2010, 31, 281–288. DOI:10.1002/marc.200900641.
  • Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New Insights into the Structure and Reduction of Graphite Oxide. Nat. Chem. 2009, 1, 403–408. DOI:10.1038/nchem.281.
  • Wang, Q.; Gao, W.; Xie, Z. M. Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease. J. Appl. Polym. Sci. 2003, 89, 2397–2399. DOI:10.1002/app.12363.
  • Yu, W.; Xie, H.; Yin, L.; Zhao, J.; Xia, L.; Chen, L. Exceptionally High Thermal Conductivity of Thermal Grease: synergistic Effects of Graphene and Alumina. Int. J. Thermal Sci. 2015, 91, 76–82. DOI:10.1016/j.ijthermalsci.2015.01.006.
  • Song, N.; Jiao, D.; Cui, S.; Hou, X.; Ding, P.; Shi, L. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. ACS Appl. Mater. Interfaces 2017, 9, 2924–2932. DOI:10.1021/acsami.6b11979.
  • Feng, C.-P.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Chen, J.; Yang, W. Electrically Insulating POE/BN Elastomeric Composites with High through-Plane Thermal Conductivity Fabricated by Two-Roll Milling and Hot Compression. Adv. Compos. Hybrid Mater. 2018, 1, 160–167. DOI:10.1007/s42114-017-0013-2.
  • Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced through-Plane Thermal Conductivity of Boron Nitride/Epoxy Composites. Compos. Part A: Appl. Sci. Manufact. 2017, 98, 25–31. DOI:10.1016/j.compositesa.2017.03.012.
  • Anithambigai, P.; Chakravarthii, M. K. D.; Mutharasu, D.; Huong, L. H.; Zahner, T. Potential Thermally Conductive Alumina Filled Epoxy Composite for Thermal Management of High Power LEDs. J. Mater. Sci: Mater. Electron. 2017, 28, 856–867. DOI:10.1007/s10854-016-5600-4.
  • Fassler, A.; Majidi, C. Liquid-Phase Metal Inclusions for a Conductive Polymer Composite. Adv. Mater. 2015, 27, 1928–1932. DOI:10.1002/adma.201405256.
  • Cong, H. L.; Pan, T. R. Photopatternable Conductive Pdms Materials for Microfabrication. Adv. Funct. Mater. 2008, 18, 1912–1921. DOI:10.1002/adfm.200701437.
  • Unger, M. A.; Chou, H.; Thorsen, T.; Scherer, A.; Quake, S. R. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science 2000, 288, 113–116. DOI:10.1126/science.288.5463.113.
  • Roy, C. K.; Bhavnani, S.; Hamilton, M. C.; Johnson, R. W.; Nguyen, J. L.; Knight, R. W.; Harris, D. K. Investigation into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials. Int. J. Heat Mass Transf. 2015, 85, 996–1002. DOI:10.1016/j.ijheatmasstransfer.2015.02.029.
  • Peacock, M. A.; Roy, C. K.; Hamilton, M. C.; Wayne Johnson, R.; Knight, R. W.; Harris, D. K. Characterization of Transferred Vertically Aligned Carbon Nanotubes Arrays as Thermal Interface Materials. Int. J. Heat Mass Transf. 2016, 97, 94–100. DOI:10.1016/j.ijheatmasstransfer.2016.01.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.