173
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Morphology and functional properties of electrospun expanded polystyrene (EPS)/reduced graphene oxide (RGO) nanofiber composite

, , &
Pages 939-946 | Received 19 Aug 2019, Accepted 08 Sep 2019, Published online: 23 Sep 2019

References

  • Sun, Y.; Bao, H.; Guo, Z.; Yu, J. Modelling of the Electrical Percolation of Mixed Carbon Filler in Polymer Based Composites. Macromolecules 2009, 42, 459–463. DOI:10.1021/ma8023188.
  • Starry, Z. Simultaneous Electrical Rheological Measurements on Melts of Conductive Polymer Composites under Elongation. Polymer 2014, 55, 5608–5611.
  • Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. DOI:10.3390/s7030267.
  • Varghese, S. H.; Nair, R.; Nair, B. G.; Hanajiri, T.; Maekawa, T.; Yoshida, Y. Sensors Based on Carbon Nanotubes and Their Applications: A Review. Curr. Nanosci. 2010, 6, 331–346. DOI:10.2174/157341310791659053.
  • Hill, E. W.; Vijayaragahvan, A.; Novoselov, K. Graphene Sensors. IEEE Sensors J. 2011, 11, 3161–3170. DOI:10.1109/JSEN.2011.2167608.
  • Llobet, E. Gas Sensors Using Carbon Nanomaterials: A Review. Sens. Actuators B: Chem. 2013, 179, 32–45. DOI:10.1016/j.snb.2012.11.014.
  • Mao, S.; Lu, G. H.; Chen, J. H. Nanocarbon-Based Gas Sensors: Progress and Challenges. J. Mater. Chem. A 2014, A2, 5573–5579. DOI:10.1039/c3ta13823b.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Progr. Polym. Sci. 2014, 39, 1934–1972. DOI:10.1016/j.progpolymsci.2014.03.001.
  • Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. DOI:10.1016/S0266-3538(03)00178-7.
  • Luo, C. J.; Nangrejo, M.; Edirisinghe, M. A Novel Method of Selecting Solvents for Polymer Electrospinning. Polymer 2010, 51, 1654–1662. DOI:10.1016/j.polymer.2010.01.031.
  • Dias, J.; Antunes, F.; Bartolo, P. Influence of the Production Rheological Behaviour in Electrospun PCL Nanofibers Production for Tissue Engineering Applications. Chem. Eng. Trans. 2013, 32, 1015–1020.
  • Abd-Razak, S. I.; Wahab, I. F.; Fadil, F.; Dahli, F. N.; Md-Khudzari, A. Z.; Adeli, H. A Review of Electrospun Conducive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications and Future Directions. Adv. Mater. Sci. Eng. 2015, 2015, 1–19. DOI:10.1155/2015/356286.
  • Alayande, S. O.; Dare, E. O.; Msagati, T. A. M.; Akinlabi, A. K.; Aiyedun, P. O. Superoleophillic Electrospun Polystyrene/Exfoliated Graphite Fibre for Selective Removal of Crude Oil from Water. Phys. Chem. Earth 2016, 92, 7–13. DOI:10.1016/j.pce.2015.09.004.
  • Shin, C. Filtration Application from Recycled Expanded Polystyrene. J. Colloid Interface Sci. 2006, 302, 267–271. DOI:10.1016/j.jcis.2006.05.058.
  • Paulchamy, B.; Arthi, G.; Lignesh, B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J. Nanomed. Nanomater. 2015, 6, 453–460.
  • Rodbari, R. J.; Wendelbo, R.; Jamshidi, L. C. L. A.; Hernández, E. P.; Nascimento, L. Study of Physical and Chemical Characterization of Nanocomposite Polystyrene/Graphene Oxide High Acidities Can Be Applied in Thin Films. J. Chil. Chem. Soc. 2016, 61, 3120–3124. DOI:10.4067/S0717-97072016000300023.
  • Meyer, C. J.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. DOI:10.1038/nature05545.
  • Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152. DOI:10.1016/j.carbon.2008.09.045.
  • Bak, S. M.; Nam, K. W.; Lee, C. W.; Kim, K. H.; Jung, H. C.; Yang, X. Q.; Kim, K. B. Spinel LiMn2O4/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries. J. Mater. Chem. 2011, 21, 17309–17315. DOI:10.1039/c1jm13741g.
  • Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Park, M. R.; Kwon, D. N.; Kim, J. H. Antibacterial Activity of Dithiothreitol Reduced Graphene Oxide. J. Ind. Eng. Chem. 2013, 19, 1280–1288.
  • Wong, C.; Lai, C.; Lee, K.; Hamid, S. Advanced Chemical Reduction of Graphene Oxide and Its Photo Catalytic Activity in Degrading Black 5. Materials 2015, 8, 7118–7128. DOI:10.3390/ma8105363.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Alfred, K.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets Vial Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI:10.1016/j.carbon.2007.02.034.
  • Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911. DOI:10.1021/ja904251p.
  • Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y. W. High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes. Carbon 2011, 49, 573–580. DOI:10.1016/j.carbon.2010.09.060.
  • Bera, R.; Suin, S.; Maiti, S.; Shrivastava, N. K.; Khatua, B. B. Carbon Nanohorn and Graphene Nanoplate Based Polystyrene Nanocompositess for Superior Electormagnetic Interference Shielding Applications. J. Appl. Polym. Sci. 2015, 10, 1–14.
  • Araby, S.; Meng, Q.; Zhang, L.; Kang, H.; Majewski, P.; Tang, Y.; Ma, J. Electrically and Thermally Conductive Elastomer/Graphene Nanocomposites by Solution Mixing. Polymer 2014, 55, 201–210. DOI:10.1016/j.polymer.2013.11.032.
  • Park, Y.; You, M.; Shin, J.; Ha, S.; Kim, D.; Heo, M. N.; Nah, J.; Kim, Y. A.; Seol, J. H. Thermal Conductivity Enhancement in Electrospun Poly (Vinyl Acohol) and Poly (Vinyl Alcohol)/Cellulose Nanocrystal Composite Nanofibers. Sci. Rep. 2019, 9, 3026.
  • Shen, M.; Chang, T.; Hsieh, T.; Li, Y.; Chiang, C.; Yang, H.; Chuenyip, M. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites. J. Nanomater. 2013, 2013, 1–9. DOI:10.1155/2013/565401.
  • Alshammari, B. A.; Saba, N.; Alotaibi, M. D.; Alotibi, M. F.; Jawaid, M.; Alothman, O. Y. Evaluation of Mechanical, Physical, and Morphological Properties of Epoxy Composites Reinforced with Different Date Palm Fillers. Materials 2019, 12, 2145–2145. DOI:10.3390/ma12132145.
  • Du, J.; Cheng, H. The Fabrication, Properties and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys. 2012, 213, 1060–1077. DOI:10.1002/macp.201200029.
  • Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Indus. Eng. Chem. 2015, 21, 11–25. DOI:10.1016/j.jiec.2014.03.022.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI:10.1038/nmat1849.
  • Noh, Y. J.; Joh, H.-I.; Yu, J.; Hwang, S. H.; Lee, S.; Lee, C. H.; Kim, S. Y.; Youn, J. R. Ultra-High Dispersion of Graphene in Polymer Composite via Solvent Free Fabrication and Functionalization. Sci. Rep. 2015, 5, 9141. DOI:10.1038/srep09141.
  • Collona, S.; Monticello, O.; Gomez, C.; Novara, C.; Sarraco, G.; Fina, A. Effect of Morphology and Defectiveness of Graphene Related Materials on the Electrical and Thermal Conductivity of Their Polymer Nanocomposites. Polymer 2016, 102, 292–300. DOI:10.1016/j.polymer.2016.09.032.
  • Mezzenga, R.; Ruokolaine, J.; Frederickson, G. H.; Kramer, E. J.; Moses, D.; Haeger, A. J. Templating Organic Semiconductors via Self-Assembly of Polymer Colloids. Science 2003, 299, 1872–1874. DOI:10.1126/science.1081334.
  • Yoonessi, M.; Gaier, J. R. Highly Conductive Multi Functional Graphene Poly Carbonate Composites. Macromolecules 2011, 44, 6488–6495.
  • Xu, C.; Gao, J.; Xiu, H.; Li, X.; Zhang, J.; Luo, F.; Zhang, Q.; Chen, F.; Fu, Q. Can in Situ Thermal Reduction Be a Green and Efficient Way in the Fabrication of Electrically Conductive Polymer/Reduced Graphene Oxide Nanocomposites. Compos. Part A 2013, 53, 24–33. DOI:10.1016/j.compositesa.2013.06.007.
  • Zhao, P.; Luo, Y.; Yang, J.; He, D.; Kong, L.; Zheng, P.; Yang, Q. Electrically Conductive Graphene Filled Polymer Composites with Well Organized Three-Dimensional Microstructures. Mater. Lett. 2014, 121, 74–77. DOI:10.1016/j.matlet.2014.01.100.
  • Dong, X. M.; Luo, Y.; Xie, L. N.; Fu, R. W.; Zhang, M. Q. Conductive Carbon Black-Filled Polymethacrylate Composite as Gas Sensing Materials: Effect of Glass Transition Temperature. Thin Solid Films 2008, 516, 7886–7890. DOI:10.1016/j.tsf.2008.06.003.
  • Feller, J. F.; Linossier, I.; Levesque, G. Conductive Polymer Composites (CPCs) Comparison of Electrical Properties of (Ethylene-co-Ethyl Acrylate)-Carbon Black with Poly (Butylene Terephthalate)/Poly (Ethylene-co-Ethyl Acrylate) Carbon Black. Polym. Adv. Technol. 2002, 13, 714–724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.