190
Views
3
CrossRef citations to date
0
Altmetric
Proceedings of the 14th International Conference “Advanced Carbon Nanostructures” (ACNS’2019)

Rules of fullerene polarizability

ORCID Icon
Pages 71-77 | Received 06 Jul 2019, Accepted 19 Sep 2019, Published online: 08 Oct 2019

References

  • Bonin, K. D.; Kresin, V. V. Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters; World Scientific: River Edge, NJ, 1997.
  • Broyer, M.; Antoine, R.; Benichou, E.; Compagnon, I.; Dugourd, P.; Rayane, D. Structure of Nano-Objects through Polarizability and Dipole Measurements. Comptes Rendus Phys. 2002, 3, 301–317. DOI: 10.1016/S1631-0705(02)01318-X.
  • Sabirov, D. S. Polarizability as a Landmark Property for Fullerene Chemistry and Materials Science. RSC Adv. 2014, 4, 44996–45028. DOI: 10.1039/C4RA06116K.
  • Hong, I.-H.; Gao, C.-J. Large Area Self-Ordered Parallel C60 Molecular Nanowire Arrays on Si(110) Surfaces. Carbon 2016, 107, 925–932. DOI: 10.1016/j.carbon.2016.06.105.
  • Bayliss, S. L.; Greenham, N. C.; Friend, R. H.; Bouchiat, H.; Chepelianskii, A. D. Spin-Dependent Recombination Probed through the Dielectric Polarizability. Nat. Commun. 2015, 6, 8534. DOI: 10.1038/ncomms9534.
  • Sabirov, D. S. The C70 Fullerene Adducts with Low Anisotropy of Polarizability Are More Efficient Electron Acceptors for Organic Solar Cells. The Minimum Anisotropy Hypothesis for Efficient Isomer-Free Fullerene-Adduct Photovoltaics. J. Phys. Chem. C 2016, 120, 24667–24674. DOI: 10.1021/acs.jpcc.6b09341.
  • Srivastava, A. K.; Pandey, S. K.; Misra, N. Encapsulation of Lawrencium into C60 Fullerene: Lr@C60 versus Li@C60. Mater. Chem. Phys. 2016, 177, 437–441. DOI: 10.1016/j.matchemphys.2016.04.050.
  • Liu, L.; Li, L.; Li, Q.; Zeng, Q. Polarizability as a Tool to Determine the Electrostatic Shielding Effect of Nanocarbon Cages: A Polarizability Distribution Study on Noble Gas Endohedral Fullerenes. Phys. Chem. Chem. Phys. 2017, 19, 4751–4757. DOI: 10.1039/C6CP07978D.
  • Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Reduced and Quenched Polarizabilities of Interior Atoms in Molecules. Chem. Sci. 2013, 4, 2349–2356. DOI: 10.1039/c3sc50242b.
  • Zope, R. R.; Bhusal, S.; Basurto, L.; Baruah, T.; Jackson, K. Site Specific Atomic Polarizabilities in Endohedral Fullerenes and Carbon Onions. J. Chem. Phys. 2015, 143, 084306. DOI: 10.1063/1.4928079.
  • Langlet, R.; Lambin, P.; Mayer, A.; Kuzhir, P. P.; Maksimenko, S. A. Dipole Polarizability of Onion-like Carbons and Electromagnetic Properties of Their Composites. Nanotechnology 2008, 19, 115706. DOI: 10.1088/0957-4484/19/11/115706.
  • Liu, X.; Zuo, T.; Dorn, H. C. Polarizability Effects Dominate the Chromatographic Retention Behavior of Spheroidal and Elipsoidal Metallofullerene Nanospheres. J. Phys. Chem. C. 2017, 121, 4045–4049. DOI: 10.1021/acs.jpcc.6b12558.
  • Liu, X.; Dorn, H. C. DFT Prediction of Chromatographic Retention Behavior for a Trimetallic Nitride Metallofullerene Series. Inorganica Chim. Acta. 2017, 468, 316–320. DOI: 10.1016/j.ica.2017.04.033.
  • Sabirov, D. S.; Bulgakov, R. G. Reactivity of Fullerene Derivatives C60O and C60F18 (C3v) in Terms of Local Curvature and Polarizability. Fuller. Nanotube Carbon Nanostruct. 2010, 18, 455–457. DOI: 10.1080/1536383X.2010.487777.
  • Sabirov, D. S.; Bulgakov, R. G.; Khursan, S. L.; Dzhemilev, U. M. A New Approach to the Estimation of the Fullerene Reactivity in 1,3-Dipolar Addition Based on Polarizability Indices. DOKL. Phys. Chem. 2009, 425, 54–56. DOI: 10.1134/S0012501609030026.
  • Sabirov, D. S.; Khursan, S. L.; Bulgakov, R. G. New Approaches to Assessing Reactivity of Fullerenes in Radical and 1,3-Dipolar Addition Reactions. Vestn. Bashkirsk. Un-Ta. 2008, 13, 764–767.
  • Sarhangi, S. M.; Waskasi, M. M.; Hashemianzadeh, S. M.; Martin, D. R.; Matyushov, D. V. Half Reactions with Multiple Redox States Do Not Follow the Standard Theory: A Computational Study of Electrochemistry of C60. J. Phys. Chem. C. 2018, 122, 17080–17087. DOI: 10.1021/acs.jpcc.8b04764.
  • Sabirov, D. S.; Garipova, R. R.; Cataldo, F. Polarizability of Isomeric and Related Interstellar Compounds in the Aspect of Their Abundance. Mol. Astrophys. 2018, 12, 10–19. DOI: 10.1016/j.molap.2018.05.001.
  • Huber, S. E.; Gatchell, M.; Zettergren, H.; Mauracher, A. A Precedent of Van-Der-Waals Interactions Outmatching Coulomb Explosion. Carbon 2016, 109, 843–850. DOI: 10.1016/j.carbon.2016.08.056.
  • Galimov, D. I.; Tuktarov, A. R.; Sabirov, D. S.; Khuzin, A. A.; Dzhemilev, U. M. Reversible Luminescence Switching of a Photochromic Fullerene[60]-Containing Spiropyran. J. Photochem. Photobiol. Chem. 2019, 375, 64–70. DOI: 10.1016/j.jphotochem.2019.02.017.
  • Sabirov, D. S. Fullerene Derivatives for Molecular Switch: Recent Advances and Theoretical Insights from the Polarizability. In Fullerenes: Chemistry, Natural Sources and Technological Applications; Nova Publishers: New York, 2014; pp 167–188. DOI: 10.1002/chin.201547255.
  • Bulgakov, R. G.; Galimov, D. I.; Sabirov, D. S. New Property of the Fullerenes: The Anomalously Effective Quenching of Electronically Excited States Owing to Energy Transfer to the C70 and C60 Molecules. JETP Lett. 2007, 85, 632–635. DOI: 10.1134/S0021364007120090.
  • Kumar, A.; Thakkar, A. J. Dipole Polarizability, Sum Rules, Mean Excitation Energies, and Long-Range Dispersion Coefficients for Buckminsterfullerene C60. Chem. Phys. Lett. 2011, 516, 208–211. DOI: 10.1016/j.cplett.2011.09.080.
  • Schneider, H.-J. Dispersive Interactions in Solution Complexes. Acc. Chem. Res. 2015, 48, 1815–1822. DOI: 10.1021/acs.accounts.5b00111.
  • Sabirov, D. S.; Khursan, S. L.; Bulgakov, R. G. Estimation of the Energy of Intermolecular Attraction in the System С60 + С60O3 + O3. Vest. Bashkirsk. Un-Ta. 2007, 12, 18–19.
  • López-Andarias, J.; Frontera, A.; Matile, S. Anion − π Catalysis on Fullerenes. J. Am. Chem. Soc. 2017, 139, 13296–13299. DOI: 10.1021/jacs.7b08113.
  • López‐Andarias, J.; Bauzá, A.; Sakai, N.; Frontera, A.; Matile, S. Remote Control of Anion–π Catalysis on Fullerene-Centered Catalytic Triads. Angew. Chem. 2018, 130, 11049–11053. DOI: 10.1002/ange.201804092.
  • Zhao, Y.; Cotelle, Y.; Liu, L.; López-Andarias, J.; Bornhof, A.-B.; Akamatsu, M.; Sakai, N.; Matile, S. The Emergence of Anion − π Catalysis. Acc. Chem. Res. 2018, 51, 2255–2263. DOI: 10.1021/acs.accounts.8b00223.
  • Thakkar, A. J. A Hierarchy for Additive Models of Polarizability. AIP Conf. Proc. 2012, 1504, 586–589. DOI: 10.1063/1.4771764.
  • Blair, S. A.; Thakkar, A. J. How Often Is the Minimum Polarizability Principle Violated? Chem. Phys. Lett. 2013, 556, 346–349. DOI: 10.1016/j.cplett.2012.11.048.
  • Blair, S. A.; Thakkar, A. J. Additive Models for the Molecular Polarizability and Volume. Chem. Phys. Lett. 2014, 610–611, 163–166. DOI: 10.1016/j.cplett.2014.07.027.
  • Kedrov, B. M. Mendeleev’s Criticism of the Mechanistic Principle of Additivity in Chemistry. Russ. Chem. Rev. 1952, 21, 969–987.
  • Vereshchagin, A. N. Polarizability of the Molecules; Nauka: Moscow, 1980.
  • Sohmen, E.; Fink, J.; Krätschmer, W. Electron Energy-Loss Spectroscopy Studies on C60 and C70 Fullerite. Z Phys. B. Condens. Matter. 1992, 86, 87–92. DOI: 10.1007/BF01323552.
  • Ren, S. L.; Wang, Y.; Rao, A. M.; McRae, E.; Holden, J. M.; Hager, T.; Wang, K.; Lee, W. T.; Ni, H. F.; Selegue, J.; Eklund, P. C. Ellipsometric Determination of the Optical Constants of C60 [Buckminsterfullerene] Films. Appl. Phys. Lett. 1991, 59, 2678. DOI: 10.1063/1.105907.
  • Eklund, P. C.; Rao, A. M.; Wang, Y.; Zhou, P.; Wang, K.-A.; Holden, J. M.; Dresselhaus, M. S.; Dresselhaus, G. Optical Properties of C60- and C70-Based Solid Films. Thin Solid Films 1995, 257, 211–232. DOI: 10.1016/0040-6090(94)05706-0.
  • Ren, S.-L.; Wang, K. A.; Zhou, P.; Wang, Y.; Rao, A. M.; Meier, M. S.; Selegue, J. P.; Eklund, P. C. Dielectric Function of Solid C70 Films. Appl. Phys. Lett. 1992, 61, 124. DOI: 10.1063/1.108248.
  • Ballard, A.; Bonin, K.; Louderback, J. Absolute Measurement of the Optical Polarizability of C60. J. Chem. Phys. 2000, 113, 5732. DOI: 10.1063/1.1290472.
  • Antoine, R.; Dugourd, P.; Rayane, D.; Benichou, E.; Broyer, M.; Chandezon, F.; Guet, C. Direct Measurement of the Electric Polarizability of Isolated C60 Molecules. J. Chem. Phys. 1999, 110, 9771. DOI: 10.1063/1.478944.
  • Compagnon, I.; Antoine, R.; Broyer, M.; Dugourd, P.; Lermé, J.; Rayane, D. Electric Polarizability of Isolated C70 Molecules. Phys. Rev. A. 2001, 64, 025201. DOI: 10.1103/PhysRevA.64.025201.
  • Hackermüller, L.; Hornberger, K.; Gerlich, S.; Gring, M.; Ulbricht, H.; Arndt, M. Optical Polarizabilities of Large Molecules Measured in near-Field Interferometry. Appl. Phys. B. 2007, 89, 469–473. DOI: 10.1007/s00340-007-2873-6.
  • Berninger, M.; Stefanov, A.; Deachapunya, S.; Arndt, M. Polarizability Measurements of a Molecule via a near-Field Matter-Wave Interferometer. Phys. Rev. A. 2007, 76, 013607. DOI: 10.1103/PhysRevA.76.013607.
  • Hornberger, K.; Gerlich, S.; Ulbricht, H.; Hackermüller, L.; Nimmrichter, S.; Goldt, I. V.; Boltalina, O.; Arndt, M. Theory and Experimental Verification of Kapitza–Dirac–Talbot–Lau Interferometry. New J. Phys. 2009, 11, 043032. DOI: 10.1088/1367-2630/11/4/043032.
  • Gueorguiev, G. K.; Pacheco, J. M.; Tománek, D. Quantum Size Effects in the Polarizability of Carbon Fullerenes. Phys. Rev. Lett. 2004, 92, 215501. DOI: 10.1103/PhysRevLett.92.215501.
  • Martin, D.; Sild, S.; Maran, U.; Karelson, M. QSPR Modeling of the Polarizability of Polyaromatic Hydrocarbons and Fullerenes. J. Phys. Chem. C. 2008, 112, 4785–4790. DOI: 10.1021/jp7100368.
  • Alparone, A.; Librando, V.; Minniti, Z. Validation of Semiempirical PM6 Method for the Prediction of Molecular Properties of Polycyclic Aromatic Hydrocarbons and Fullerenes. Chem. Phys. Lett. 2008, 460, 151–154. DOI: 10.1016/j.cplett.2008.05.028.
  • Munn, R. W.; Petelenz, P. Mechanism for Effective Polarizability Enhancement in Molecular Crystals: C60. Chem. Phys. Lett. 2004, 392, 7–10. DOI: 10.1016/j.cplett.2004.05.039.
  • Zope, R. R. The Static Dipole Polarizability of C70 Fullerene. J. Phys. B: At. Mol. Opt. Phys. 2007, 40, 3491–3496. DOI: 10.1088/0953-4075/40/17/015.
  • Zope, R. R.; Baruah, T.; Pederson, M. R.; Dunlap, B. I. Static Dielectric Response of Icosahedral Fullerenes from C60 to C2160 Characterized by an All-Electron Density Functional Theory. Phys. Rev. B. 2008, 77, 115452. DOI: 10.1103/PhysRevB.77.115452.
  • Calaminici, P.; Carmona-Espindola, J.; Geudtner, G.; Köster, A. M. Static and Dynamic Polarizability of C540 Fullerene. Int. J. Quantum Chem. 2012, 112, 3252–3255. DOI: 10.1002/qua.24176.
  • Pankratyev, E. Y.; Khatymov, R. V. Polarizability of Isolated Fullerenes. In International Baykal Scientific School in Fundamental Physics. Proceedings of the Conference for Young Scientists, 2017; pp 190–193.
  • Sabirov, D. S.; Ōsawa, E. Dipole Polarizability of Nanodiamonds and Related Structures. Diamond Relat. Mater. 2015, 55, 64–69. DOI: 10.1016/j.diamond.2015.03.009.
  • Langlet, R.; Mayer, A.; Geuquet, N.; Amara, H.; Vandescuren, M.; Henrard, L.; Maksimenko, S.; Lambin, P. Study of the Polarizability of Fullerenes with a Monopole–Dipole Interaction Model. Diam. Relat. Mater. 2007, 16, 2145–2149. DOI: 10.1016/j.diamond.2007.10.019.
  • Sedel’nikova, O. V.; Bulusheva, L. G.; Okotrub, A. V. Influence of Defects in the Carbon Network on the Static Polarizability of Fullerenes. Phys. Solid State 2009, 51, 863–869. DOI: 10.1134/S1063783409040404.
  • Sabirov, D. S.; O̅sawa, E. Information Entropy of Fullerenes. J. Chem. Inf. Model. 2015, 55, 1576–1584. DOI: 10.1021/acs.jcim.5b00334.
  • Sabirov, D. S.; Ori, O.; László, I. Isomers of the C84 Fullerene: A Theoretical Consideration within Energetic, Structural, and Topological Approaches. Fuller. Nanotube Carbon Nanostruct. 2018, 26, 100–110. DOI: 10.1080/1536383X.2017.1405389.
  • Sabirov, D. S.; Tukhbatullina, A. A.; Bulgakov, R. G. Dependence of Static Polarizabilities of C60Xn Fullerene Cycloadducts on the Number of Added Groups X = CH2 and NH (n = 1–30). Comput. Theor. Chem. 2012, 993, 113–117. DOI: 10.1016/j.comptc.2012.05.041.
  • Tukhbatullina, A. A.; Khamitov, E. M.; Sabirov, D. S. Distributed Polarizability of Fullerene [2 + 1]-Adducts C60X (n = 1 and 2) with Symmetric Addends X = CH2 and O: A Fresh View on the Effect of Positional Isomerism. Comput. Theor. Chem. 2019, 1149, 31–36. DOI: 10.1016/j.comptc.2018.12.017.
  • Sabirov, D. S.; Garipova, R. R.; Bulgakov, R. G. General Formula for Accurate Calculation of Halofullerenes Polarizability. Chem. Phys. Lett. 2012, 523, 92–97. DOI: 10.1016/j.cplett.2011.12.012.
  • Sabirov, D. S.; Garipova, R. R.; Bulgakov, R. G. Polarizability of C70 Fullerene Derivatives C70X8 and C70X10. Fuller. Nanotube Carbon Nanostruct. 2012, 20, 386–390. DOI: 10.1080/1536383X.2012.655203.
  • Tukhbatullina, A. A.; Shepelevich, I. S.; Sabirov, D. S. Positional Isomerism, Stability, and Polarizability of C20(CH2)n (n = 1–10), the Cyclopropane Adducts of the Smallest Fullerene: General Formula for Calculation of Mean Polarizability of Fullerene Derivatives C20XnYm and C60XnYm with Fixed (n + m) Number of Different Addends. Fuller. Nanotube Carbon Nanostruct. 2017, 25, 71–78. DOI: 10.1080/1536383X.2016.1255203.
  • Anafcheh, M.; Naderi, F.; Ektefa, F.; Ghafouri, R.; Zahedi, M. Polarizability of the Si60H60 Derivatives Containing Epoxide Moieties (Si60H60 − 2nOn with n up to 30): a DFT Study. J. Clust. Sci. 2018, 29, 889–896. DOI: 10.1007/s10876-018-1365-7.
  • Sabirov, D. S.; Bulgakov, R. G. Polarizability of Oxygen-Containing Fullerene Derivatives С60Оn and С70О with Epoxide/Oxidoannulene Moieties. Chem. Phys. Lett. 2011, 506, 52–56. DOI: 10.1016/j.cplett.2011.02.040.
  • Sabirov, D. S.; Terentyev, A. O.; Cataldo, F. Bisadducts of the C60 and C70 Fullerenes with Anthracene: Isomerism and DFT Estimation of Stability and Polarizability. Comput. Theor. Chem. 2016, 1081, 44–48. DOI: 10.1016/j.comptc.2016.02.012.
  • Sabirov, D. S.; Terentyev, A. O.; Bulgakov, R. G. Counting the Isomers and Estimation of Anisotropy of Polarizability of the Selected C60 and C70 Bisadducts Promising for Organic Solar Cells. J. Phys. Chem. A. 2015, 119, 10697–10705. DOI: 10.1021/acs.jpca.5b07334.
  • Sokolov, V. I.; Stankevich, I. V. The Fullerenes: New Allotropic Forms of Carbon: Molecular and Electronic Structure, and Chemical Properties. Russ. Chem. Rev. 1993, 62, 419–435. DOI: 10.1070/RC1993v062n05ABEH000025.
  • Tuktarov, A. R.; Korolev, V. V.; Sabirov, D. S.; Dzhemilev, U. M. Catalytic Cycloaddition of Diazoalkanes to Fullerene C60. Russ. J. Org. Chem. 2011, 47, 41–47. DOI: 10.1134/S1070428011010039.
  • Heymann, D.; Bachilo, S. M.; Weisman, R. B. Ozonides, Epoxides, and Oxidoannulenes of C70. J. Am. Chem. Soc. 2002, 124, 6317–6323. DOI: 10.1021/ja012488p.
  • Sabirov, D. S. Polarizability of C60 Fullerene Dimer and Oligomers: The Unexpected Enhancement and Its Use for Rational Design of Fullerene-Based Nanostructures with Adjustable Properties. RSC Adv. 2013, 3, 19430–19439. DOI: 10.1039/c3ra42498g.
  • Sabirov, D. S.; Terentyev, A. O.; Bulgakov, R. G. Polarizability of Fullerene [2 + 2]-Dimers: A DFT Study. Phys. Chem. Chem. Phys. 2014, 16, 14594. DOI: 10.1039/c3cp55528c.
  • Swart, M.; van Duijnen, P. T. Rapid Determination of Polarizability Exaltation in Fullerene-Based Nanostructures. J. Mater. Chem. C. 2015, 3, 23–25. DOI: 10.1039/C4TC02060J.
  • Sabirov, D. S.; Garipova, R. R.; Bulgakov, R. G. Density Functional Theory Study on the Decay of Fullerenyl Radicals RC60•, ROC60•, and ROOC60• (R = tert-Butyl and Cumyl) and Polarizability of the Formed Fullerene Dimers. J. Phys. Chem. A. 2013, 117, 13176–13183. DOI: 10.1021/jp409845q.
  • Tumanskii, B. L. An ESR Study of Radical Reactions of C60 and C70. Russ. Chem. Bull. 1996, 45, 2267–2278. DOI: 10.1007/BF01435367.
  • Tukhbatullina, A.; Shepelevich, I.; Sabirov, D. S. Exaltation of Polarizability as a Common Property of Fullerene Dimers with Diverse Intercage Bridges. Fuller. Nanotube Carbon Nanostruct. 2018, 26, 661–666. DOI: 10.1080/1536383X.2018.1463993.
  • Pankratyev, E. Y.; Tukhbatullina, A. A.; Sabirov, D. S. Dipole Polarizability, Structure, and Stability of [2 + 2]-Linked Fullerene Nanostructures (C60)n (n ≤ 7). Phys. E. 2017, 86, 237–242. DOI: 10.1016/j.physe.2016.10.042.
  • Sokolov, V. I. The Problem of Fullerenes. Russ. Chem. Bull. 1993, 42, 1–11. DOI: 10.1007/BF00699966.
  • Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. DOI: 10.1021/cr300297r.
  • Delaney, P.; Greer, J. C. C60 as a Faraday Cage. Appl. Phys. Lett. 2004, 84, 431. DOI: 10.1063/1.1640783.
  • Yan, H.; Yu, S.; Wang, X.; He, Y.; Huang, W.; Yang, M. Dipole Polarizabilities of Noble Gas Endohedral Fullerenes. Chem. Phys. Lett. 2008, 456, 223–226. DOI: 10.1016/j.cplett.2008.03.046.
  • Sabirov, D. S.; Bulgakov, R. G. Polarizability Exaltation of Endofullerenes X@Cn (n = 20, 24, 28, 36, 50, and 60; X Is a Noble Gas Atom). JETP Lett. 2010, 92, 662–665. DOI: 10.1134/S0021364010220054.
  • Zakirova, A. D.; Sabirov, D. S. The Volume of the Fullerene Cage and Nonadditivity of the Polarizability of Endofullerenes and Hydrogenated Endofullerenes with Encapsulated Noble Gas Atoms. Russ. J. Phys. Chem. A. 2019, 94 (in press).
  • Tukhbatullina, A. A.; Sabirov, D. S. A DFT Study of Three Isomeric Fullerene Structures C120 and Their Endohedral Complexes with Sodium Fluoride. Вестник Башкирск ун-Та. 2018, 7, 390. DOI: 10.33184/bulletin-bsu-2018.2.23.
  • Zope, R. R. Electronic Structure and Static Dipole Polarizability of C60@C240. J. Phys. B. At. Mol. Opt. Phys. 2008, 41, 085101. DOI: 10.1088/0953-4075/41/8/085101.
  • Sabirov, D. S. From Endohedral Complexes to Endohedral Fullerene Covalent Derivatives: A Density Functional Theory Prognosis of Chemical Transformation of Water Endofullerene H2O@C60 upon Its Compression. J. Phys. Chem. C. 2013, 117, 1178–1182. DOI: 10.1021/jp310673j.
  • Sabirov, D. S.; Tukhbatullina, A. A.; Bulgakov, R. G. Compression of Methane Endofullerene CH4@C60 as a Potential Route to Endohedral Covalent Fullerene Derivatives: A DFT Study. Fuller. Nanotube Carbon Nanostruct. 2015, 23, 835–842. DOI: 10.1080/1536383X.2015.1022257.
  • Sabirov, D. S.; Terentyev, A. O.; Bulgakov, R. G. A Theoretical Study of the Polarizablity of Endofullerene NHe@C60. Vestn. Bashkirsk. Un-Ta. 2013, 18, 1006–1008.
  • Oliveira, M. I. A.; Rivelino, R.; de Brito Mota, F.; Gueorguiev, G. K. Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages. J. Phys. Chem. C. 2014, 118, 5501–5509. DOI: 10.1021/jp409967a,.
  • Zeng, Q.; Li, J.; Huang, H.; Wang, X.; Yang, M. Polarization Response of Clathrate Hydrates Capsulated with Guest Molecules. J. Chem. Phys. 2016, 144, 204308. DOI: 10.1063/1.4952417.
  • Sabirov, D. S.; Terentyev, A. O.; Shepelevich, I. S.; Bulgakov, R. G. Inverted Thermochemistry of “Norbornadiene–Quadricyclane” Molecular System inside Fullerene Nanocages. Comput. Theor. Chem. 2014, 1045, 86–92. DOI: 10.1016/j.comptc.2014.07.003.
  • Semenov, S. G.; Bedrina, M. E. A Quantum Chemical Study of Silsesquioxanes: H8Si8O12, Me8Si8O12, H@Me8Si8O12, He@Me8Si8O12+, and He@Me8Si8O12. J. Struct. Chem. 2013, 54, 159–163. DOI: 10.1134/S002247661301023X.
  • Sokolov, V. I. Topological Ideas in Stereochemistry. Russ. Chem. Rev. 1973, 42, 452–463. DOI: 10.1070/RC1973v042n06ABEH002636.
  • Sabirov, D. S. Fullerene Compounds with General Formulae C60O1–3: Isomerism, Stability and Polarizability. Mendeleev Commun. 2019, 29 (in press).
  • Wang, Y.-F.; Li, Y.; Li, Z.-R.; Ma, F.; Wu, D.; Sun, C.-C. Perfluorinated Exohedral Potassium-Metallofullerene K···CnFn (n = 20 or 60): Partial Interior and Surface Excess Electron State. Theor. Chem. Acc. 2010, 127, 641–650. DOI: 10.1007/s00214-010-0763-1.
  • Nekoei, A.-R.; Haghgoo, S. Introduction and Theoretical Investigation of New Azafullerene Structures with Nitrogen Belts. Comput. Theor. Chem. 2015, 1067, 148–157. DOI: 10.1016/j.comptc.2015.05.027.
  • Sabirov, D.; Zakirova, A. D.; Tukhbatullina, A. A.; Gubaydullin, I. M.; Bulgakov, R. G. Influence of the Charge on the Volumes of Nanoscale Cages (Carbon and Boron-Nitride Fullerenes, Ge9z– Zintl Ions, and Cubic Fe4S4 Clusters). RSC Adv. 2013, 3, 1818–1824. DOI: 10.1039/C2RA22404F.
  • Smith, S. M.; Markevitch, A. N.; Romanov, D. A.; Li, X.; Levis, R. J.; Schlegel, H. B. Static and Dynamic Polarizabilities of Conjugated Molecules and Their Cations. J. Phys. Chem. A. 2004, 108, 11063–11072. DOI: 10.1021/jp048864k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.