523
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

On the characterisation of carbon black from tire pyrolysis

ORCID Icon
Pages 368-376 | Received 20 Oct 2019, Accepted 23 Oct 2019, Published online: 01 Nov 2019

References

  • Roy, C.; Chaala, A.; Darmstadt, H. The Vacuum Pyrolysis of Used Tires: End-Uses for Oil and Carbon Black Products. J. Anal. Appl. Pyrolysis 1999, 51, 201–221. DOI: 10.1016/S0165-2370(99)00017-0.
  • Kaminsky, W.; Mennerich, C. Pyrolysis of Synthetic Tire Rubber in a Fluidised-Bed Reactor to Yield 1,3-Butadiene, Styrene and Carbon Black. J. Anal. Appl. Pyrolysis 2001, 58, 803–811. DOI: 10.1016/S0165-2370(00)00129-7.
  • Barbooti, M. M.; Mohamed, T. J.; Hussain, A. A.; Abas, F. O. Optimization of Pyrolysis Conditions of Scrap Tires under Inert Gas Atmosphere. J. Anal. Appl. Pyrolysis 2004, 72, 165–170. DOI: 10.1016/j.jaap.2004.05.001.
  • Ucar, S.; Karagoz, S.; Ozkan, A. R.; Yanik, J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis. Fuel 2005, 84, 1884–1892. DOI: 10.1016/j.fuel.2005.04.002.
  • Martínez, J. D.; Cardona-Uribe, N.; Murillo, R.; García, T.; López, J. M. Carbon Black Recovery from Waste Tire Pyrolysis by Demineralization: Production and Application in Rubber Compounding. Waste Manage. 2019, 85, 574–584. DOI: 10.1016/j.wasman.2019.01.016.
  • Wang, M.; Zhang, L.; Li, A.; Irfan, M.; Du, Y.; Di, W. Comparative Pyrolysis Behaviors of Tire Tread and Side Wall from Waste Tire and Characterization of the Resulting Chars. J. Environ. Manage. 2019, 232, 364–371.
  • Cataldo, F. Preparation of Pyrolytic Carbon Black from Scrap Tire Rubber Crumb and Evaluation in New Rubber Compounds. Macromol. Mater. Eng. 2005, 290, 463–467. DOI: 10.1002/mame.200400388.
  • Cataldo, F. Thermal Depolymerization and Pyrolysis of Cis-1,4-Polyisoprene: Preparation of Liquid Polyisoprene and Terpene Resin. J. Anal. Appl. Pyrolysis 1998, 44, 121–130. DOI: 10.1016/S0165-2370(97)00081-8.
  • Cataldo, F. Preparation and Evaluation of Thermally Depolymerized Natural Rubber in Rubber Compound Formulations. Prog. Rubber Plast. Recycl. Technol. 2006, 22, 147–164. DOI: 10.1177/147776060602200301.
  • Cataldo, F. Evaluation of Pyrolytic Oil from Scrap Tires as Plasticizer of Rubber Compounds. Prog. Rubber Plast. Recycl. Technol. 2006, 22, 243–252. DOI: 10.1177/147776060602200402.
  • Berki, P.; Karger-Kocsis, J. Comparative Properties of Styrene-Butadiene Rubbers (SBR) Containing Pyrolytic Carbon Black, Conventional Carbon Black, and Organoclay. J. Macromol. Sci. B 2016, 55, 749–763. DOI: 10.1080/00222348.2016.1197511.
  • Moulin, L.; Da Silva, S.; Bounaceur, A.; Herblot, M.; Soudais, Y. Assessment of Recovered Carbon Black Obtained by Waste Tires Steam Water Thermolysis: An Industrial Application. Waste Biomass Valoriz. 2017, 8, 2757–2770. DOI: 10.1007/s12649-016-9822-8.
  • Gnanaraj, J.; Lee, R.; Levine, A.; Wistrom, J.; Wistrom, S.; Li, Y.; Paranthaman, M. Sustainable Waste Tire Derived Carbon Material as a Potential Anode for Lithium-Ion Batteries. Sustainability 2018, 10, 2840. DOI: 10.3390/su10082840.
  • Wu, X.; Wang, S.; Dong, R. Lightly Pyrolyzed Tire Rubber Used as Potential Asphalt Alternative. Constr. Build. Mater. 2016, 112, 623–628. DOI: 10.1016/j.conbuildmat.2016.02.208.
  • Darmstadt, H.; Roy, C.; Kaliaguine, S. Characterization of Pyrolytic Carbon Blacks from Commercial Tire Pyrolysis Plants. Carbon 1995, 33, 1449–1455. DOI: 10.1016/0008-6223(95)00096-V.
  • Darmstadt, H.; Roy, C.; Kaliaguine, S. ESCA Characterization of Commercial Carbon Blacks and of Carbon Blacks from Vacuum Pyrolysis of Used Tires. Carbon 1994, 32, 1399–1406. DOI: 10.1016/0008-6223(94)90132-5.
  • Roy, C.; Rastegar, A.; Kaliaguine, S.; Darmstadt, H.; Tochev, V. Physicochemical Properties of Carbon Blacks from Vacuum Pyrolysis of Used Tires. Plast. Rubber Compos. Process. Appl. 1995, 23, 21–30. DOI: 10.1016/0008-6223(94)90132-5.
  • Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Heat-Treatment of Carbon Blacks Obtained by Pyrolysis of Used Tires. Effect on the Surface Chemistry, Porosity and Electrical Conductivity. J. Anal. Appl. Pyrolysis 2003, 67, 55–76. DOI: 10.1016/S0165-2370(02)00017-7.
  • Sugatri, R. I.; Wirasadewa, Y. C.; Saputro, K. E.; Muslih, E. Y.; Ikono, R.; Nasir, M. Recycled Carbon Black from Waste of Tire Industry: Thermal Study. Microsyst. Technol. 2018, 24, 749–755. DOI: 10.1007/s00542-017-3397-6.
  • Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M. Á. High Yield and Simple One-Step Production of Carbon Black Nanoparticles from Waste Tires. Heliyon 2019, 5, e02139. DOI: 10.1016/j.heliyon.2019.e02139.
  • Mott, R. A.; Wilkinson, H. C. The Use of the Eschka Method for the Determination of High Sulphur Contents. J. Appl. Chem. 2007, 3, 218–223. DOI: 10.1002/jctb.5010030506.
  • Van Krevelen, D. W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, 2009.
  • Moldoveanu, S. C. (1998.). Analytical Pyrolysis of Natural Organic Polymers; Elsevier: Amsterdam; p. 204.
  • Cataldo, F. The Role of Fullerene-Like Structures in Carbon Black and Their Interaction with Dienic Rubber. Fuller. Nanotub. Carbon Nanostruct. 2000, 8, 105–112. DOI: 10.1080/10641220009351401.
  • Cataldo, F. The Impact of a Fullerene-Like Concept in Carbon Black Science. Carbon 2002, 40, 157–162. DOI: 10.1016/S0008-6223(01)00167-1.
  • Cataldo, F. Fullerene‐Like Structures as Interaction Sites between Carbon Black and Rubber. Macromol. Symp. 2005, 228, 91–98. DOI: 10.1002/masy.200551008.
  • Cataldo, F.; Ori, O.; Iglesias-Groth, S. Topological Lattice Descriptors of Graphene Sheets with Fullerene-Like Nanostructures. Mol. Simul. 2010, 36, 341–353. DOI: 10.1080/08927020903483262.
  • Wypych, G. Handbook of Fillers, 4th ed.; ChemTec Pub.: Toronto, 2016; Chapter 7.
  • Cataldo, F.; Keheyan, Y.; Heymann, D. A New Model for the Interpretation of the Unidentified Infrared Bands (UIBS) of the Diffuse Interstellar Medium and of the Protoplanetary Nebulae. Int. J. Astrobiol. 2002, 1, 79–86. DOI: 10.1017/S1473550402001131.
  • Cataldo, F.; Keheyan, Y. Heavy Petroleum Fractions as Possible Analogues of Carriers of the Unidentified Infrared Bands. Int. J. Astrobiol. 2003, 2, 41–50. DOI: 10.1017/S1473550403001381.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Far- and Mid-Infrared Spectroscopy of Complex Organic Matter of Astrochemical Interest: Coal, Heavy Petroleum Fractions and Asphaltenes. Mon. Not. R. Astronom. Soc. 2013, 429, 3025–3039. DOI: 10.1093/mnras/sts558.
  • Cataldo, F.; Angelini, G.; García-Hernández, D. A.; Manchado, A. Far Infrared (Terahertz) Spectroscopy of a Series of Polycyclic Aromatic Hydrocarbons and Application to Structure Interpretation of Asphaltenes and Related Compounds. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2013, 111, 68–79. DOI: 10.1016/j.saa.2013.03.077.
  • Friedel, R. A.; Orchin, M. Ultraviolet Spectra of Aromatic Compounds; Wiley: New York, 1951.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Submerged Carbon Arc in Liquid Benzene: GC-MS Analysis of the Products. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 576–584. DOI: 10.1080/1536383X.2017.1345885.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Toluene Pyrolysis in an Electric Arc: Products Analysis. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 469–477. DOI: 10.1080/1536383X.2019.1576639.
  • Tue, N. M.; Takahashi, S.; Suzuki, G.; Viet, P. H.; Subramanian, A.; Bulbule, K. A.; Tanabe, S. Methylated and Unsubstituted Polycyclic Aromatic Hydrocarbons in Street Dust from Vietnam and India: Occurrence, Distribution and In Vitro Toxicity Evaluation. Environ. Pollut. 2014, 194, 272–280. DOI: 10.1016/j.envpol.2014.07.029.
  • Machala, M.; Švihálková-Šindlerová, L.; Pěnčíková, K.; Krčmář, P.; Topinka, J.; Milcová, A.; Nováková, Z.; Kozubík, A.; Vondráček, J. Effects of Methylated Chrysenes on AhR-Dependent and-Independent Toxic Events in Rat Liver Epithelial Cells. Toxicology 2008, 247, 93–101. DOI: 10.1016/j.tox.2008.02.008.
  • Brydson, J. A. Rubber Chemistry; Applied Sciences Publishers: London, 1978.
  • Gruber, T.; Zerda, T. W.; Gerspacher, M. Raman Studies of Heat-Treated Carbon Blacks. Carbon 1994, 32, 1377–1382. DOI: 10.1016/0008-6223(94)90125-2.
  • Ungar, T.; Gubicza, J.; Ribarik, G.; Pantea, C.; Zerda, T. W. Microstructure of Carbon Blacks Determined by X-Ray Diffraction Profile Analysis. Carbon 2002, 40, 929–937. DOI: 10.1016/S0008-6223(01)00224-X.
  • Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. DOI: 10.1063/1.1674108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.