286
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Long-term colloidal stability of graphene oxide aqueous nanofluids

, , , & ORCID Icon
Pages 407-417 | Received 22 Sep 2019, Accepted 17 Nov 2019, Published online: 28 Nov 2019

References

  • Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials. J. Nanomater. 2011, 2011, 1. DOI: 10.1155/2011/685081.
  • Punetha, V. D.; Rana, S.; Yoo, H. J.; Chaurasia, A.; McLeskey, J. T.; Ramasamy, M. S.; Sahoo, N. G.; Cho, J. W. Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites: A Comparison Study between CNT and Graphene. Prog. Polym. Sci. 2017, 67, 1–47. DOI: 10.1016/j.progpolymsci.2016.12.010.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Khenfouch, M.; Buttner, U.; Baïtoul, M.; Maaza, M. Synthesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method. Graphene 2014, 03, 7–13. DOI: 10.4236/graphene.2014.32002.
  • Hwang, J.; Yoon, T.; Jin, S. H.; Lee, J.; Kim, T. S.; Hong, S. H.; Jeon, S. Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process. Adv. Mater. 2013, 25, 6724–6729. DOI: 10.1002/adma.201302495.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI: 10.1021/nl0731872.
  • Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. DOI: 10.1038/nnano.2007.451.
  • Cote, L. J.; Kim, J.; Tung, V. C.; Luo, J.; Kim, F.; Huang, J. Graphene Oxide as Surfactant Sheets. Pure. Appl. Chem. 2010, 83, 95–110. DOI: 10.1351/PAC-CON-10-10-25.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon 2013, 64, 225–229. DOI: 10.1016/j.carbon.2013.07.055.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. DOI: 10.1021/nn1006368.
  • Viana, M. M.; Lima, M. C.; Forsythe, J. C.; Gangoli, V. S.; Cho, M.; Cheng, Y.; Silva, G. G.; Wong, M. S.; Caliman, V. Facile Graphene Oxide Preparation by Microwave-Assisted Acid Method. J. Braz. Chem. Soc. 2015, 26, 978–984. DOI: 10.5935/0103-5053.20150061
  • Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-Film Particles of Graphite Oxide 1: High-Yield Synthesis and Flexibility of the Particles. Carbon 2004, 42, 2929–2937. DOI: 10.1016/j.carbon.2004.07.003.
  • Pendolino, F.; Parisini, E.; Lo Russo, S. Time-Dependent Structure and Solubilization Kinetics of Graphene Oxide in Methanol and Water Dispersions. J. Phys. Chem. C 2014, 118, 28162–28169. DOI: 10.1021/jp506360f.
  • Eigler, S.; Dotzer, C.; Hirsch, A.; Enzelberger, M.; Müller, P. Formation and Decomposition of CO2 Intercalated Graphene Oxide. Chem. Mater. 2012, 24, 1276–1282. DOI: 10.1021/cm203223z.
  • Johnson, D. W.; Dobson, B. P.; Coleman, K. S. A Manufacturing Perspective on Graphene Dispersions. Curr. Opin. Colloid Interface Sci. 2015, 20, 367–382. DOI: 10.1016/j.cocis.2015.11.004.
  • Gudarzi, M. M. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions. Langmuir 2016, 32, 5058–5068. DOI: 10.1021/acs.langmuir.6b01012.
  • Bansal, P.; Panwar, A. S.; Bahadur, D. Molecular-Level Insights into the Stability of Aqueous Graphene Oxide Dispersions. J. Phys. Chem. C 2017, 121, 9847–9859. DOI: 10.1021/acs.jpcc.7b00464.
  • Hadadian, M.; Goharshadi, E. K.; Youssefi, A. Electrical Conductivity, Thermal Conductivity, and Rheological Properties of Graphene Oxide-Based Nanofluids. J. Nanopart. Res. 2014, 16, 2788. DOI: 10.1007/s11051-014-2788-1
  • Ali, A.; Hwang, E. Y.; Choo, J.; Lim, D. W. PEGylated Nanographene-Mediated Metallic Nanoparticle Clusters for Surface Enhanced Raman Scattering-Based Biosensing. Analyst 2018, 143, 2604–2615. DOI: 10.1039/C8AN00329G.
  • Tantra, R.; Schulze, P.; Quincey, P. Effect of Nanoparticle Concentration on Zeta-Potential Measurement Results and Reproducibility. Particuology 2010, 8, 279–285. DOI: 10.1016/j.partic.2010.01.003.
  • Wang, J.; Chen, Z.; Chen, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environ. Sci. Technol. 2014, 48, 4817–4825. DOI: 10.1021/es405227u.
  • Lima, M. C. F. S.; Amparo, S. Z. S. D.; Ribeiro, H.; Soares, A. L.; Jr, Viana, M. M.; Seara, L. M.; Paniago, R. M.; Silva, G. G.; Caliman, V. Aqueous Suspensions of Carbon Black with Ethylenediamine and Polyacrylamide-Modified Surfaces: applications for Chemically Enhanced Oil Recovery. Carbon 2016, 109, 290–299. DOI: 10.1016/j.carbon.2016.08.021.
  • Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014, 430, 108–112. DOI: 10.1016/j.jcis.2014.05.033.
  • Ribeiro, H.; Silva, W. M.; Neves, J. C.; Calado, H. D. R.; Paniago, R. M.; Seara, L. M.; das Mercês Camarano, D.; Silva, G. G. Multifunctional Nanocomposites Based on Tetraethylenepentamine-Modified Graphene Oxide/Epoxy. Polym. Test 2015, 43, 182–192. DOI: 10.1016/j.polymertesting.2015.03.010.
  • Tesfai, W.; Singh, P.; Shatilla, Y.; Iqbal, M. Z.; Abdala, A. A. Rheology and Microstructure of Dilute Graphene Oxide Suspension. J. Nanopart. Res. 2013, 15, 1989–1995. DOI: 10.1007/s11051-013-1989-3
  • Choi, Y. J.; Kim, E.; Han, J.; Kim, J. H.; Gurunathan, S. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent. Molecules 2016, 21, 375. DOI: 10.3390/molecules21030375.
  • Ribeiro, H.; Silva, W. M.; Rodrigues, M. T. F.; Neves, J. C.; Paniago, R.; Fantini, C.; Calado, H. D.; Seara, L. M.; Silva, G. G. Glass Transition Improvement in Epoxy/Graphene Composites. J. Mater. Sci. 2013, 48, 7883–7892. DOI: 10.1007/s10853-013-7478-3.
  • Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564. DOI: 10.1021/la801744a.
  • Su, R.; Lin, S. F.; Chen, D. Q.; Chen, G. H. Study on the Absorption Coefficient of Reduced Graphene Oxide Dispersion. J. Phys. Chem. C 2014, 118, 12520–12525. DOI: 10.1021/jp500499d.
  • Konkena, B.; Vasudevan, S. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements. J. Phys. Chem. Lett. 2012, 3, 867–872. DOI: 10.1021/jz300236w.
  • Malvern Instruments. Zetasizer Nano Series User Manual. Malvern Instruments Ltd: Worcestershire, U.K., 2004, MAN0317, 1.
  • Liaros, N.; Aloukos, P.; Kolokithas-Ntoukas, A.; Bakandritsos, A.; Szabo, T.; Zboril, R.; Couris, S. Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. J. Phys. Chem. C 2013, 117, 6842–6850. DOI: 10.1021/jp400559q.
  • Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615. DOI: 10.1021/am200428v.
  • Berne, B. J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Courier Corporation. John Wiley & Sons: New York, 2000.
  • Frankberg, E. J.; George, L.; Efimov, A.; Honkanen, M.; Pessi, P.; Levänen, E. Measuring Synthesis Yield in Graphene Oxide Synthesis by Modified Hummers Method. Fuller. Nanotube. Carbon Nanostruct. 2015, 23, 755–759. DOI: 10.1080/1536383X.2014.993754.
  • Esfahani, M. R.; Languri, E. M.; Nunna, M. R. Effect of Particle Size and Viscosity on Thermal Conductivity Enhancement of Graphene Oxide Nanofluid. Int. Commun. Heat Mass Transf. 2016, 76, 308–315. DOI: 10.1016/j.icheatmasstransfer.2016.06.006.
  • Gurunathan, S.; Han, J. W.; Kim, J. H. Green Chemistry Approach for the Synthesis of Biocompatible Graphene. Int. J. Nanomed. 2013, 8, 2719–2732. DOI: 10.2147/IJN.S45174
  • Hu, X.; Yu, Y.; Hou, W.; Zhou, J.; Song, L. Effects of Particle Size and pH Value on the Hydrophilicity of Graphene Oxide. Appl. Surf. Sci. 2013, 273, 118–121. DOI: 10.1016/j.apsusc.2013.01.201
  • Lee, D.; Park, J. J.; Lee, M. K.; Lee, G. J. Aging-Resistant Nanofluids Containing Covalent Functionalized Boron Nitride Nanosheets. Nanotechnology 2017, 28, 405704. DOI: 10.1016/j.apsusc.2013.01.201.
  • Kamatchi, R.; Venkatachalapathy, S.; Srinivas, B. A. Synthesis, Stability, Transport Properties, and Surface Wettability of Reduced Graphene Oxide/Water Nanofluids. Int. J. Therm. Sci. 2015, 97, 17–25. DOI: 10.1016/j.ijthermalsci.2015.06.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.