201
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of ultralight 3D graphene/Pt aerogel via in situ gamma-ray irradiation and its application for the catalytic degradation of methyl orange

, , , &
Pages 425-434 | Received 29 Aug 2019, Accepted 18 Nov 2019, Published online: 02 Dec 2019

References

  • Daniel, M. C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. DOI: 10.1021/cr030698+.
  • Islam, M. T.; Saenz-Arana, R.; Wang, H.; Bernal, R.; Noveron, J. C. Green Synthesis of Gold, Silver, Platinum, and Palladium Nanoparticles Reduced and Stabilized by Sodium Rhodizonate and Their Catalytic Reduction of 4-Nitrophenol and Methyl Orange. New J. Chem. 2018, 42, 6472–6478. DOI: 10.1039/C8NJ01223G.
  • Li, J.; Liu, C.-y.; Liu, Y. Au/Graphene Hydrogel: Synthesis, Characterization and Its Use for Catalytic Reduction of 4-Nitrophenol. J. Mater. Chem. 2012, 22, 8426. DOI: 10.1039/c2jm16386a.
  • Zanolli, Z.; Leghrib, R.; Felten, A.; Pireaux, J. J.; Llobet, E.; Charlier, J. C. Gas Sensing with Au-Decorated Carbon Nanotubes. ACS Nano. 2011, 5, 4592–4599. DOI: 10.1021/nn200294h.
  • Zhang, Y.; Liu, S.; Lu, W.; Wang, L.; Tian, J.; Sun, X. In Situ Green Synthesis of Au Nanostructures on Graphene Oxide and Their Application for Catalytic Reduction of 4-Nitrophenol. Catal. Sci. Technol. 2011, 1, 1142. DOI: 10.1039/c1cy00205h.
  • Shi, F.; Zhang, Q.; Ma, Y.; He, Y.; Deng, Y. From CO Oxidation to CO2 Activation: An Unexpected Catalytic Activity of Polymer-Supported Nanogold. J. Am. Chem. Soc. 2005, 127, 4182–4183. DOI: 10.1021/ja042207o.
  • Guan, Y.; Hensen, E. J. M. Ethanol Dehydrogenation by Gold Catalysts: The Effect of the Gold Particle Size and the Presence of Oxygen. Appl. Catal. A: Gen. 2009, 361, 49–56. DOI: 10.1016/j.apcata.2009.03.033.
  • Zhang, Q.; Zhang, Y.; Gao, Z.; Ma, H.-L.; Wang, S.; Peng, J.; Li, J.; Zhai, M. A Facile Synthesis of Platinum Nanoparticle Decorated Graphene by One-Step γ-Ray Induced Reduction for High Rate Supercapacitors. J. Mater. Chem. C 2013, 1, 321–328. DOI: 10.1039/C2TC00078D.
  • Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets: In Situ Synthesis and Magnetic Resonance Imaging Applications. Small 2010, 6, 169–173. DOI: 10.1002/smll.200901360.
  • Rümmeli, M. H.; Rocha, C. G.; Ortmann, F.; Ibrahim, I.; Sevincli, H.; Börrnert, F.; Kunstmann, J.; Bachmatiuk, A.; Pötschke, M.; Shiraishi, M.; et al. Graphene: Piecing It Together. Adv. Mater. 2011, 23, 4471–4490. DOI: 10.1002/adma.201101855.
  • Peres, N. M. R. The Electronic Properties of Graphene and Its Bilayer. Vacuum 2009, 83, 1248–1252. DOI: 10.1016/j.vacuum.2009.03.018.
  • Tian, H.; Ren, T. L.; Xie, D.; Wang, Y. F.; Zhou, C. J.; Feng, T. T.; Fu, D.; Yang, Y.; Peng, P. G.; Wang, L. G.; Liu, L. T. Graphene-on-Paper Sound Source Devices. ACS Nano. 2011, 5, 4878–4885. DOI: 10.1021/nn2009535.
  • Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. Thermal Conductivity of Isotopically Modified Graphene. Nat. Mater. 2012, 11, 203–207. DOI: 10.1038/nmat3207.
  • Guerriero, E.; Polloni, L.; Rizzi, L. G.; Bianchi, M.; Mondello, G.; Sordan, R. Graphene Audio Voltage Amplifier. Small 2012, 8, 357–361. DOI: 10.1002/smll.201102141.
  • Eda, G.; Nathan, A.; Wöbkenberg, P.; Colleaux, F.; Ghaffarzadeh, K.; Anthopoulos, T. D.; Chhowalla, M. Graphene Oxide Gate Dielectric for Graphene-Based Monolithic Field Effect Transistors. Appl. Phys. Lett. 2013, 102, 133108. DOI: 10.1063/1.4799970.
  • Shao, J.-J.; Lv, W.; Yang, Q.-H. Self-Assembly of Graphene Oxide at Interfaces. Adv. Mater. 2014, 26, 5586–5612. DOI: 10.1002/adma.201400267.
  • Qin, Y.; Peng, Q.; Ding, Y.; Lin, Z.; Wang, C.; Li, Y.; Xu, F.; Li, J.; Yuan, Y.; He, X.; Li, Y. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. ACS Nano. 2015, 9, 8933–8941. DOI: 10.1021/acsnano.5b02781.
  • Zhang, Q.; Xu, X.; Lin, D.; Chen, W.; Xiong, G.; Yu, Y.; Fisher, T. S.; Li, H. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity. Adv. Mater. 2016, 28, 2229–2237. DOI: 10.1002/adma.201505409.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • He, Y.; Li, J.; Luo, K.; Li, L.; Chen, J.; Li, J. Engineering Reduced Graphene Oxide Aerogel Produced by Effective γ-Ray Radiation-Induced Self-Assembly and Its Application for Continuous Oil–Water Separation. Ind. Eng. Chem. Res. 2016, 55, 3775–3781. DOI: 10.1021/acs.iecr.6b00073.
  • Luo, K.; Li, J.; Li, L.; Li, J. A Facile Method for Preparing 3D Graphene/Ag Aerogel via Gamma-Ray Irradiation. Fullerenes,Nanotubes Carbon Nanostruct. 2016, 24, 720–724. DOI: 10.1080/1536383X.2016.1224855.
  • Li, J.; Li, J.; Meng, H.; Xie, S.; Zhang, B.; Li, L.; Ma, H.; Zhang, J.; Yu, M. Ultra-Light, Compressible and Fire-Resistant Graphene Aerogel as a Highly Efficient and Recyclable Absorbent for Organic Liquids. J. Mater. Chem. A 2014, 2, 2934. DOI: 10.1039/c3ta14725h.
  • Zhang, B.; Li, L.; Wang, Z.; Xie, S.; Zhang, Y.; Shen, Y.; Yu, M.; Deng, B.; Huang, Q.; Fan, C.; Li, J. Radiation Induced Reduction: An Effective and Clean Route to Synthesize Functionalized Graphene. J. Mater. Chem. 2012, 22, 7775. DOI: 10.1039/c2jm16722k.
  • Nethravathi, C.; Anumol, E. A.; Rajamathi, M.; Ravishankar, N. Highly Dispersed Ultrafine Pt and PtRu Nanoparticles on Graphene: formation Mechanism and Electrocatalytic Activity. Nanoscale 2011, 3, 569–571. DOI: 10.1039/C0NR00664E.
  • He, Y.-L.; Li, J.-H.; Li, L.-F.; Chen, J.-B.; Li, J.-Y. The Synergy Reduction and Self-Assembly of Graphene Oxide via Gamma-Ray Irradiation in an Ethanediamine Aqueous Solution. Nucl. Sci. Tech. 2016, 27, 1–8. DOI: 10.1007/s41365-016-0068-8.
  • Nguyen, V. N.; Tran, D. T.; Nguyen, M. T.; Le, T. T. T.; Ha, M. N.; Nguyen, M. V.; Pham, T. D. Enhanced Photocatalytic Degradation of Methyl Orange Using ZnO/Graphene Oxide Nanocomposites. Res. Chem. Intermed. 2018, 44, 3081–3095. DOI: 10.1007/s11164-018-3294-3.
  • He, H.; Xue, S.; Wu, Z.; Yu, C.; Yang, K.; Peng, G.; Zhou, W.; Li, D. Sonochemical Fabrication, Characterization and Enhanced Photocatalytic Performance of Ag2S/Ag2WO4 Composite Microrods. Chin. J. Catal. 2016, 37, 1841–1850. DOI: 10.1016/S1872-2067(16)62515-9.
  • Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res. Lett. 2017, 12, 143. DOI: 10.1186/s11671-017-1904-4.
  • Sun, X.; Luo, W.; Chen, L.; Zheng, L.; Bao, C.; Sun, P.; Huang, N.; Sun, Y.; Fang, L.; Wang, L. Synthesis of Porous Al Doped ZnO Nanosheets with High Adsorption and Photodecolorizative Activity and the Key Role of Al Doping for Methyl Orange Removal. RSC Adv. 2016, 6, 2241–2251. DOI: 10.1039/C5RA21954J.
  • Zhang, F.; Dong, G.; Wang, M.; Zeng, Y.; Wang, C. Efficient Removal of Methyl Orange Using Cu2O as a Dual Function Catalyst. Appl. Surf. Sci. 2018, 444, 559–568. DOI: 10.1016/j.apsusc.2018.03.087.
  • Dan, Z.; Yang, Y.; Qin, F.; Wang, H.; Chang, H. Facile Fabrication of Cu(2)O Nanobelts in Ethanol on Nanoporous Cu and Their Photodegradation of Methyl Orange. Materials (Basel) 2018, 11, 446. DOI: 10.3390/ma11030446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.