153
Views
11
CrossRef citations to date
0
Altmetric
Proceedings of the 14th International Conference “Advanced Carbon Nanostructures” (ACNS'2019)

Low-field electron emission from carbon cluster films: combined thermoelectric/hot-electron model of the phenomenon

, , , &
Pages 286-294 | Received 17 Jun 2019, Accepted 21 Nov 2019, Published online: 30 Dec 2019

References

  • Xu, N. S.; Ejaz Huq, S. Novel Cold Cathode Materials and Applications. Mater. Sci. Eng. R Rep. 2005, 48, 47–189. DOI: 10.1016/j.mser.2004.12.001.
  • Gröning, O.; Küttel, O. M.; Gröning, P.; Schlapbach, L. Field Emitted Electron Energy Distribution from Nitrogen-Containing Diamondlike Carbon. Appl. Phys. Lett. 1997, 71, 2253–2255. DOI: 10.1063/1.120042.
  • Cui, J. B.; Ristein, J.; Ley, L. Low-Threshold Electron Emission from Diamond. Phys. Rev. B. 1999, 60, 16135–16142. DOI: 10.1103/PhysRevB.60.16135.
  • Ilie, A.; Ferrari, A. C.; Yagi, T.; Robertson, J. Effect of sp2-Phase Nanostructure on Field Emission from Amorphous Carbons. Appl. Phys. Lett. 2000, 76, 2627–2629. DOI: 10.1063/1.126430.
  • Obraztsov, A. N.; Pavlovskii, I. Y.; Volkov, A. P. Field Electron Emission in Graphite-Like Films. Tech. Phys. 2001, 46, 1437–1443. DOI: 10.1134/1.1418509.
  • Karabutov, A. V.; Frolov, V. D.; Konov, V. I. Diamond/sp2-Bonded Carbon Structures: Quantum Well Field Electron Emission. Diam. Relat. Mater. 2001, 10, 840–846. DOI: 10.1016/S0925-9635(00)00569-0.
  • Okotrub, A. V.; Bulusheva, L. G.; Gusel'nikov, A. V.; Kuznetsov, V. L.; Butenko, Y. V. Field Emission from Products of Nanodiamond Annealing. Carbon. 2004, 42, 1099–1102. DOI: 10.1016/j.carbon.2003.12.007.
  • Orlanducci, S.; Fiori, A.; Sessa, V.; Tamburri, E.; Toschi, F.; Terranova, M. L. Nanocristalline Diamond Films Grown in Nitrogen Rich Atmosphere: Structural and Field Emission Properties. J. Nanosci. Nanotechnol. 2008, 8, 3228–3234. DOI: 10.1166/jnn.2008.154.
  • Nose, K.; Fujita, R.; Kamiko, M.; Mitsuda, Y. Electron Field Emission from Undoped Polycrystalline Diamond Particles Synthesized by Microwave-Plasma Chemical Vapor Peposition. J. Vac. Sci. Technol. B. 2012, 30, 011204. DOI: 10.1116/1.3670988.
  • Tordjman, M.; Bolker, A.; Saguy, C.; Kalish, R. Temperature Dependence of Reversible Switch-Memory in Electron Field Emission from Ultrananocrystalline Diamond. Appl. Phys. Lett. 2012, 101, 173116. DOI: 10.1063/1.4764907.
  • Geis, M. W.; Twichell, J. C.; Lyszczarz, T. M. Diamond Emitters Fabrication and Theory. J. Vac. Sci. Technol. B. 1996, 14, 2060–2067. DOI: 10.1116/1.588986.
  • Robertson, J. Mechanisms of Electron Field Emission from Diamond, Diamond-Like Carbon, and Nanostructured Carbon. J. Vac. Sci. Technol. B. 1999, 17, 659–665. DOI: 10.1116/1.590613.
  • Silva, S. R. P.; Amaratunga, G. A. J.; Okano, K. Modeling of the Electron Field Emission Process in Polycrystalline Diamond and Diamond-Like Carbon Thin Films. J. Vac. Sci. Technol. B. 1999, 17, 557–561. DOI: 10.1116/1.590593.
  • Babenko, A. Y.; Dideykin, A. T.; Eidelman, E. D. Graphene Ladder: A Model of Field Emission Center on the Surface of Loose Nanocarbon Materials. Phys. Solid State 2009, 51, 435–439. DOI: 10.1134/S1063783409020371.
  • Baskin, L. M.; Neittaanmäki, P.; Plamenevskii, B. A. Effect of Dipole Structures on Field Emission of Wide-Gap Semiconductor Emitters. Tech. Phys. 2010, 55, 1793–1796. DOI: 10.1134/S1063784210120145.
  • Voznyakovskii, A. P.; Fursey, G. N.; Voznyakovskii, A. A.; Polyakov, M. A.; Neverovskaya, A. Y.; Zakirov, I. I. Low-Threshold Field Electron Emission from Two-Dimensional Carbon Structures. Tech. Phys. Lett. 2019, 45, 467–470. DOI: 10.1134/S1063785019050158.
  • Forbes, R. G. Low-Macroscopic-Field Electron Emission from Carbon Films and Other Electrically Nanostructured Heterogeneous Materials: Hypotheses about Emission Mechanism. Sol. St. Electron. 2001, 45, 779–808. DOI: 10.1016/S0038-1101(00)00208-2.
  • Bayliss, K. H.; Latham, R. V. An Analysis of Field-Induced Hot-Electron Emission from Metal-Insulator Microstructures on Broad-Area High-Voltage Electrodes. Proc. R. Soc. Lond. 1986, A403, 285–311. DOI: 10.1098/rspa.1986.0013.
  • Xu, N. S.; Tzeng, Y.; Latham, R. V. A Diagnostic Study of the Field Emission Characteristics of Individual Micro-Emitters in CVD Diamond Films. J. Phys. D Appl. Phys. 1994, 27, 1988–1991. DOI: 10.1088/0022-3727/27/9/027.
  • Pshenichnyuk, S. A.; Yumaguzin, Y. M. Field Emission Energy Distributions of Electrons from Tungsten Tip Emitters Coated with Diamond-Like Film Prepared by Ion-Beam Deposition. Diam. Relat. Mater. 2004, 13, 125–132. DOI: 10.1016/j.diamond.2003.10.002.
  • Reich, K. V.; Eidelman, E. D.; Vul’, A. Y. Determination of Temperature Difference in Carbon Nanostructures in Field Emission. Tech. Phys. 2007, 52, 943–946. DOI: 10.1134/S1063784207070195.
  • Bandurin, D. A.; Mingels, S.; Kleshch, V. I.; Lützenkirchen-Hecht, D.; Müller, G.; Obraztsov, A. N. Field Emission Spectroscopy Evidence for Dual-Barrier Electron Tunnelling in Nanographite. Appl. Phys. Lett. 2015, 106, 233112. DOI: 10.1063/1.4922550.
  • Gröning, O.; Nilsson, L.-O.; Gröning, P.; Schlapbach, L. Properties and Characterization of Chemical Vapor Deposition Diamond Field Emitters. Sol. St. Electron. 2001, 45, 929–944. DOI: 10.1016/S0038-1101(00)00214-8.
  • Lyashenko, D. A.; Svirko, Y. P.; Petrov, M. I.; Obraztsov, A. N. The Laser Assisted Field Electron Emission from Carbon Nanostructure. J. Eur. Opt. Soc. Rapid. 2017, 13, 4.
  • Lyashenko, S.; Kleshch, V.; Obraztsov, A. Thermionic Field Electron Emission from Graphite-Based Nanomaterials. Phys. Stat. Sol. B. 2011, 248, 2712–2715. DOI: 10.1002/pssb.201100075.
  • Nozik, A. J. Spectroscopy and Hot Electron Relaxation Dynamics in Semiconductor Quantum Wells and Quantum Dots. Annu. Rev. Phys. Chem. 2001, 52, 193–231.
  • Pandey, A.; Guyot-Sionnest, P. Hot Electron Extraction from Colloidal Quantum Dots. J. Phys. Chem. Lett. 2010, 1, 45–47. DOI: 10.1021/jz900022z.
  • Cao, W.; Yuan, L.; Patterson, R.; Wen, X.; Tapping, P. C.; Kee, T.; Veetil, B. P.; Zhang, P.; Zhang, Z.; Zhang, Q.; et al. Difference in Hot Carrier Cooling Rate between Langmuir-Blodgett and Drop Cast PbS QD Films Due to Strong Electron-Phonon Coupling. Nanoscale 2017, 9, 17133–17142. DOI: 10.1039/C7NR05247B.
  • Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355–381. DOI: 10.1007/s12274-014-0644-3.
  • Li, M.; Bhaumik, S.; Goh, T. W.; Kumar, M. S.; Yantara, N.; Grätzel, M.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Slow Cooling and Highly Efficient Extraction of Hot Carriers in Colloidal Perovskite Nanocrystals. Nat. Commun. 2017, 8, 14350. DOI: 10.1038/ncomms14350.
  • Arkhipov, A. V.; Gabdullin, P. G.; Krel, S. I.; Mishin, M. V.; Shakhmin, A. L.; Gordeev, S. K.; Korchagina, S. B. Field-Induced Electron Emission from Graphitic Nano-Island Films at Silicon Substrates. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 468–472. DOI: 10.1080/1536383X.2012.655653.
  • Arkhipov, A. V.; Gabdullin, P. G.; Gnuchev, N. M.; Emel’yanov, A. Y.; Krel’, S. I. Low-Voltage Field Emission from Carbon Films Produced by Magnetron Sputtering. Tech. Phys. Lett. 2014, 40, 1065–1068. DOI: 10.1134/S1063785014120037.
  • Arkhipov, A. V.; Gabdullin, P. G.; Gordeev, S. K.; Zhurkin, A. M.; Kvashenkina, O. E. Photostimulation of Conductivity and Electronic Properties of Field-Emission Nanocarbon Coatings on Silicon. Tech. Phys. 2017, 62, 127–136. DOI: 10.1134/S1063784216120045.
  • Andronov, A.; Budylina, E.; Shkitun, P.; Gabdullin, P.; Gnuchev, N.; Kvashenkina, O.; Arkhipov, A. Characterization of Thin Carbon Films Capable of Low-Field Electron Emission. J. Vac. Sci. Technol. B. 2018, 36, 02C108. DOI: 10.1116/1.5009906.
  • Dideykin, A. T.; Eidelman, E. D.; Vul, A. Y. The Mechanism of Autoelectron Emission in Carbon Nanostructures. Solid State Commun. 2003, 126, 495–498. DOI: 10.1016/S0038-1098(03)00253-9.
  • Eydelman, E. D.; Vul', A. Y. The Strong Thermoelectric Effect in Nanocarbon Generated by Ballistic Phonon Drag of Electrons. J. Phys.Condens. Matter. 2007, 19, 266210–266223.
  • Eidelman, E. D. Thermoelectric Mechanism of Field Emission from Carbon Nanostructures. Tech. Phys. 2019, 64, 1409–1412. DOI: 10.1134/S1063784219100086.
  • Sominskii, G. G.; Sezonov, V. E.; Sakseev, D. A.; Tumareva, T. A. Influence of the Spot Field on Field Emission from Composites. Tech. Phys. 2011, 56, 850–854. DOI: 10.1134/S1063784211060235.
  • Sominskii, G. G.; Sezonov, V. E.; Taradaev, S. P.; Vdovichev, S. N. Multilayer Field Emitters Made of Contacting Hafnium and Platinum Nanolayers. Tech. Phys. 2019, 64, 116–120. DOI: 10.1134/S1063784219010249.
  • Cahill, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R. Nanoscale Thermal Transport. J. Appl. Phys. 2003, 93, 793–818. DOI: 10.1063/1.1524305.
  • Khalatnikov, I. M. Heat Exchange between a Solid Body and Helium-II. Zh. Eksp. Teor. Fiz. 1952, 22, 687–704. (in Russian).
  • Stoner, R. J.; Maris, H. J. Kapitza Conductance and Heat Flow between Solids at Temperatures from 50 to 300 K. Phys. Rev. B Condens. Matter. 1993, 48, 16373–16387. DOI: 10.1103/physrevb.48.16373.
  • Wei, X. L.; Golberg, D.; Chen, Q.; Bando, Y.; Peng, L. M. Phonon-Assisted Electron Emission from Individual Carbon Nanotubes. Nano Lett. 2011, 11, 734–739. DOI: 10.1021/nl103861p.
  • Dames, C.; Chen, G. Theoretical Phonon Thermal Conductivity of Si/Ge Superlattice Nanowires. J. Appl. Phys. 2004, 95, 682–693. DOI: 10.1063/1.1631734.
  • Gurevich, L. E. Thermoelectric Properties of Semiconductors. Zh. Eksp. Teor. Fiz. 1946, 16, 193–227. (in Russian).
  • Lifshitz, E. M.; Pitaevskii, L. P. Physical Kinetics; Pergamon Press: Oxford, 1981.
  • Ju, Y. S.; Goodson, K. E. Phonon Scattering in Silicon Films with Thickness of Order 100 nm. Appl. Phys. Lett. 1999, 74, 3005–3007. DOI: 10.1063/1.123994.
  • Chen, T.-G.; Yu, P.; Chou, R.-H.; Pan, C.-L. Phonon Thermal Conductivity Suppression of Bulk Silicon Nanowire Composites for Efficient Thermoelectric Conversion. Opt. Exp. 2010, 18, A467–A476. DOI: 10.1364/OE.18.00A467.
  • Eidelman, E. D.; Meilakhs, A. P.; Semak, B. V.; Shakhov, F. M. Thermoelectric Generator Based on Composites Obtained by Sintering of Detonation Nanodiamonds. J. Phys. D Appl. Phys. 2017, 50, 464007. DOI: 10.1088/1361-6463/aa8e1c.
  • Anselm, A. I. Introduction to Semiconductor Theory; Nauka: Moscow, 1978; Prentice-Hall: Englewood Cliffs, NJ, 1981.
  • Kleshch, V. I.; Vasilyeva, E. A.; Lyashenko, S. A.; Obronov, I. V.; Tyurnina, A. V.; Obraztsov, A. N. Surface Structure and Field Emission Properties of Few-Layer Graphene Flakes. Phys. Stat. Sol. B. 2011, 248, 2623–2626. DOI: 10.1002/pssb.201100111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.