120
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

On the interaction of C60 fullerene with poly(L-lactic acid) or poly(lactide)

ORCID Icon
Pages 621-626 | Received 05 Feb 2020, Accepted 06 Feb 2020, Published online: 27 Feb 2020

References

  • Martin, N.; Nierengarten, J. F. 2012. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes; Wiley-VCH, Weinheim.
  • Priyadarsini, K. I.; Mohan, H.; Tyagi, A. K.; Mittal, J. P. Inclusion Complex of. Gamma.-Cyclodextrin-C60: Formation, Characterization, and Photophysical Properties in Aqueous Solutions. J. Phys. Chem. 1994, 98, 4756–4759.
  • Priyadarsini, I. K.; Mohan, H.; Mittal, P. J. Characterization and Properties of γ-cyclodextrin-C60 Complex in Aqueous Solution. Fullerenes Nanot. Carbon Nanostruct. 1995, 3, 479–493.
  • Braun, T. Water Soluble Fullerene-Cyclodextrin Supramolecular Assemblies Preparation, Structure, Properties an Annotated Bibliography. Fullerenes Nanot. Carbon Nanostruct. 1997, 5, 615–626.
  • Murthy, C. N.; Geckeler, K. E. Stability Studies on the Water-Soluble β-Cyclodextrin–[60] Fullerene Inclusion Complex. Fullerenes Nanot. Carbon Nanostruct. 2002, 10, 91–98.
  • Cataldo, F. Encapsulation of C60 Fullerene in γ-Cyclodextrin: A New Concept in the Protection of Organic Substrates and Polymers from Ozone Attack: Kinetic Aspects on the Reactivity between C60 and O3. Polymer Degradat. Stabil. 2002, 77, 111–120.
  • Kawase, T.; Kurata, H. Ball-, Bowl-, and Belt-Shaped Conjugated Systems and their Complexing Abilities: Exploration of the Concave–Convex π–π Interaction. Chem Rev. 2006, 106, 5250–5273.
  • Nierengarten, J. ‐F. Supramolecular Encapsulation of [60]Fullerene with Dendritic Cyclotriveratrylene Derivatives. Fullerenes Nanot. Carbon Nanostruct. 2005, 13, 229–242.
  • Zhang, Y.; Ye, D.; Gao, X.; Liu, W.; Li, F. Study of α‐, β‐and γ‐Cyclodextrin/C60 Supramolecular Complexes: influence of the Cavity Dimension toward the Host‐Guest Complexes. Fullerenes Nanot. Carbon Nanostruct 2007, 15, 317–330.
  • Komatsu, N. Separation of Nanocarbons by Molecular Recognition. J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 195–216.
  • Haino, T.; Yanase, M.; Fukunaga, C.; Fukazawa, Y. Fullerene Encapsulation with Calix [5] Arenes. Tetrahedron 2006, 62, 2025–2035.
  • Lijanova, I. V.; Klimova, T.; Klimova, E.; Martínez, G. M. Supramolecular Complexes between C‐Undecylresorcinarene‐ Oligo (Phenylenevinylene)‐ Dendrimers and Fullerene C60. Fullerenes Nanot. Carbon Nanostruct 2008, 16, 306–313.
  • Stuparu, M. C. Rationally Designed Polymer Hosts of Fullerene. Angew. Chem. Int. Ed. 2013, 52, 7786–7790.
  • Heumueller, T.; Mateker, W. R.; Distler, A.; Fritze, U. F.; Cheacharoen, R.; Nguyen, W. H.; Biele, M.; Salvador, M.; von Delius, M.; Egelhaaf, H.-J.; et al. Morphological and Electrical Control of Fullerene Dimerization Determines Organic Photovoltaic Stability. Energy Environ. Sci. 2016, 9, 247–256.
  • Cabaleiro-Lago, E. M.; Rodríguez-Otero, J.; Carrazana-García, J. A. A Theoretical Study of Complexes between Fullerenes and Concave Receptors with Interest in Photovoltaics. Phys. Chem. Chem. Phys. 2017, 19, 26787–26798.
  • Zhou, Z.; Xu, S.; Song, J.; Jin, Y.; Yue, Q.; Qian, Y.; Liu, F.; Zhang, F.; Zhu, X. High-Efficiency Small-Molecule Ternary Solar Cells with a Hierarchical Morphology Enabled by Synergizing Fullerene and Non-Fullerene Acceptors. Nat. Energy 2018, 3, 952–959.
  • Giacalone, F.; Martin, N. Fullerene Polymers: synthesis and Properties. Chem. Rev. 2006, 106, 5136–5190.
  • Yashima, E.; Maeda, K. Fullerene-Containing Helical Polymers. Chapter 6. In Fullerene Polymers. Synthesis, Properties and Applications; Martin, N., Giacalone, F., Eds.; Wiley-VCH: Weinheim, 2009.
  • Giacalone, F.; Martín, N. New Concepts and Applications in the Macromolecular Chemistry of Fullerenes. Adv. Mater. 2010, 22, 4220–4248.
  • Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular Polymers: historical Development, Preparation, Characterization, and Functions. Chem. Rev. 2015, 115, 7196–7239.
  • Li, Z.; Gao, F.; Greenham, N. C.; McNeill, C. R. Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study. Adv. Funct. Mater. 2011, 21, 1419–1431.
  • Santos Silva, H.; Ramanitra, H. H.; Bregadiolli, B. A.; Bégué, D.; Graeff, C. F. O.; Dagron-Lartigau, C.; Peisert, H.; Chassé, T.; Hiorns, R. C. Oligo‐and Poly(Fullerene)s for Photovoltaic Applications: modeled Electronic Behaviour and Synthesis. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 1345–1355.
  • Kim, W.; Choi, J.; Kim, J.-H.; Kim, T.; Lee, C.; Lee, S.; Kim, M.; Kim, B. J.; Kim, T.-S. Comparative Study of the Mechanical Properties of All-Polymer and Fullerene–Polymer Solar Cells: The Importance of Polymer Acceptors for High Fracture Resistance. Chem. Mater. 2018, 30, 2102–2111.
  • Hongen, T.; Taniguchi, T.; Nomura, S.; Kadokawa, J. I.; Monde, K. In Depth Study on Solution-State Structure of Poly (Lactic Acid) by Vibrational Circular Dichroism. Macromol. 2014, 47, 5313–5319.
  • Schultz, R. C.; Schwaab, J. Rotationdispersion Bei Monomeren Und Polymerem L-(-)-Lactid. Macromol. Chem. Phys. 1965, 87, 90–102.
  • Cataldo, F. Formation and decomposition of poly(l-lactic acid) charge-transfer complex with iodine. Submitted for publication; 2020.
  • Jirgensons, B. Optical Activity of Proteins and Other Macromolecules, 2nd ed. Chapman & Hall Ltd: London, 1973; pp. 16–17.
  • Schultz, R. Addition Compounds and Complexes with Polymers and Models. Pure Appl. Chem. 1974, 38, 227–247.
  • Schultz, R. Modification of Chiral Properties Due to the Interaction of Polymers and Small Molecules or Ions. In Optically Active Polymers; Selegny, E., Ed.; Reidel: Dordrecht, 1979; pp. 267–290.
  • Hatano, M. Induced Circular Dichroism in Biopolymer-Dye Systems. Adv. Polym. Sci. 1986, 77, 1–136.
  • Garlotta, D. A Literature Review of Poly (Lactic Acid). J. Polym. Environm. 2001, 9, 63–84.
  • Lim, L. T.; Auras, R.; Rubino, M. Processing Technologies for Poly (Lactic Acid). Progr. Polym. Sci. 2008, 33, 820–852.
  • Maharana, T.; Mohanty, B.; Negi, Y. S. Melt–Solid Polycondensation of Lactic Acid and Its Biodegradability. Progr. Polym. Sci. 2009, 34, 99–124.
  • Tawakkal, I. S.; Cran, M. J.; Miltz, J.; Bigger, S. W. A Review of Poly (Lactic Acid)‐Based Materials for Antimicrobial Packaging. J. Food Sci. 2014, 79, R1477–R1490.
  • Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (Lactic Acid) - Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366.
  • Stuart, B.; George, B.; Mclntyre, P. Modern Infrared Spectroscopy; John Wiley & Sons: New York, 2008.
  • Gillam, A. E.; Stern, E. S. 1954. An Introduction to Electronic Absorption Spectroscopy. Edward Arnold Publishers: London, p. 50.
  • Simionescu, C. I.; Grigoras, M. Macromolecular Donor-Acceptor Complexes. Progr. Polym. Sci. 1991, 16, 907–976.
  • Garcia-Hernandez, D. A.; Cataldo, F.; Manchado, A. Charge-Transfer Interaction between C60 Fullerene and Alkylnaphthalenes. Fullerenes Nanot. Carbon Nanostruct. 2017, 25, 223–229.
  • García-Hernández, D. A.; Cataldo, F.; Manchado, A. C70 Fullerene Charge-Transfer Interaction with Alkylnaphthalenes, Pinenes, and a Diene. Fullerenes Nanot. Carbon Nanostruct. 2017, 25, 505–511.
  • Tian, X. H.; Chen, C. F. Triptycene‐Derived Calix [6] Arenes: synthesis, Structures, and Their Complexation with Fullerenes C60 and C70. Chem. Eur. J. 2010, 16, 8072–8079.
  • Chen, C. F.; Han, Y. Triptycene-Derived Macrocyclic Arenes: From Calixarenes to Helicarenes. Acc. Chem. Res. 2018, 51, 2093–2106.
  • Cataldo, F.; Iglesias-Groth, S.; Hafez, Y. On the Molar Extinction Coefficients of the Electronic Absorption Spectra of C60 and C70 Fullerenes Radical Cation. Eur. Chem. Bull 2013, 2, 1013–1018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.