205
Views
3
CrossRef citations to date
0
Altmetric
Articles

Growth and characterization of carbon nanotubes over CoFe2O4-MgO catalysts at different temperatures

, ORCID Icon, &
Pages 815-822 | Received 12 Mar 2020, Accepted 06 May 2020, Published online: 18 May 2020

References

  • Atieh, M. A.; Bakather, O. Y.; Al-Tawbini, B.; Bukhari, A. A.; Abuilaiwi, F. A.; Fettouhi, M. B. Effect of Carboxylic Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorg. Chem. Appl. 2010, 2010, 1–9. DOI: 10.1155/2010/603978.
  • Zakaria, M. R.; Akil, H.; Md.; Abdul Kudus, M. H.; Ullah, F.; Javed, F.; Nosbi, N. Hybrid Carbon Fiber-Carbon Nanotubes Reinforced Polymer Composites: A Review. Compos. Part B Eng. 2019, 176, 107313. DOI: 10.1016/j.compositesb.2019.107313.
  • Morsy, M.; Yahia, I. S.; Zahran, H. Y.; Ibrahim, M. Hydrothermal Synthesis of CNTs/Co3O4 @ rGO Mesopours Nanocomposite for Enhanced VOCs. J. Inorg. Organomet. Polym. 2019, 29, 416–422. DOI: 10.1007/s10904-018-1011-8.
  • Rather, S. u. Hydrogen Uptake of Manganese Oxide-Multiwalled Carbon Nanotube Composites. Int. J Hydrogen Energy 2019, 44, 325–331. DOI: 10.1016/j.ijhydene.2018.03.009.
  • Pasupathy, K. R.; Bindu, B. Low Power, High Speed Carbon Nanotube FET Based Level Shifters for multi-VDD Systems-On-Chips. Microelectronics J. 2015, 46, 1269–1274. DOI: 10.1016/j.mejo.2015.10.008.
  • Hyeon, J. S.; Park, J. W.; Baughman, R. H.; Kim, S. J. Electrochemical Graphene/Carbon Nanotube Yarn Artificial Muscles. Sens. Actuators, B Chem. 2019, 286, 237–242. DOI: 10.1016/j.snb.2019.01.140.
  • Ranjithkumar, R.; Arasi, S. E.; Sudhahar, S.; Nallamuthu, N.; Devendran, P.; Lakshmanan, P.; Kumar, M. K. Enhanced Electrochemical Studies of ZnO/CNT Nanocomposite for Supercapacitor Devices. Phys. B Condens. Matter 2019, 568, 51–59. DOI: 10.1016/j.physb.2019.05.025.
  • Ali, S.; Rehman, S. A. U.; Luan, H. Y.; Farid, M. U.; Huang, H. Challenges and Opportunities in Functional Carbon Nanotubes for Membrane-Based Water Treatment and Desalination. Sci. Total Environ. 2019, 646, 1126–1139. DOI: 10.1016/j.scitotenv.2018.07.348.
  • Torres-Torres, C.; Mercado-Zúñiga, C.; Martínez-González, C. L.; Martínez-Gutiérrez, H.; Rebollo, N. R.; Trejo-Valdez, M.; Vargas-García, J. R.; Torres-Martínezg, R. Optical Kerr Effect Exhibited by Carbon Nanotubes and Carbon/Metal Nanohybrid Materials. Phys. E Low-Dimensional Syst. Nanostructures 2015, 73, 156–162. DOI: 10.1016/j.physe.2015.05.035.
  • Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H. B.; Liu, B.; Yang, Y. Chem Soc Rev Carbon Nanotube Catalysts : recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. DOI: 10.1039/C4CS00492B.
  • Abdulkareem, A. S.; Kariim, I.; Bankole, M. T.; Tijani, J. O.; Abodunrin, T. F.; Olu, S. C. Synthesis and Characterization of Tri-Metallic Fe–Co–Ni Catalyst Supported on CaCO3 for Multi-Walled Carbon Nanotubes Growth via Chemical Vapor Deposition Technique. Arab. J. Sci. Eng. 2017, 42, 4365–4381. DOI: 10.1007/s13369-017-2478-2.
  • Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9, 1–13.
  • Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R.; Ruoff, R. S. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem. Mater. 1998, 10, 260–267. DOI: 10.1021/cm970412f.
  • Adam, V.; Kizek, R.; Jan, P.; Drbohla, v. J.; Chomoucka, J.; Hubalek, J.; Jasek, O. Chemical Vapor Depositions for Carbon Nanotubes Synthesis. Annu. Rev. Mater. Res. 2013, 32, 297–319.
  • Calgaro, C. O.; Perez-Lopez, O. W. Graphene and Carbon Nanotubes by CH 4 Decomposition over Co–Al Catalysts. Mater. Chem. Phys. 2019, 226, 6–19. DOI: 10.1016/j.matchemphys.2018.12.094.
  • Alfarisa, S.; Safitri, R. N.; Dwandaru, W. S. B. Effect of Catalyst Concentrations on the Growth of Carbon Nanotubes from Waste Engine Oil. EDUCATUM J. Sci. Math. Technol. (EJSMT) 2016, 3, 6–12.
  • Gur, O. M.; Kukovitsky, E. F.; S. G. L.; Sainov, N. A.; Shustov, V. A. Electron Diffraction Investigation of Catalytic Particles at the Tips of Carbon Nanotubes. Phys. Solid State 2002, 44, 473–474.
  • Yao, D.; Wu, C.; Yang, H.; Zhang, Y.; Nahil, M. A.; Chen, Y.; Williams, P. T.; Chen, H. Co-Production of Hydrogen and Carbon Nanotubes from Catalytic Pyrolysis of Waste Plastics on Ni-Fe Bimetallic Catalyst. Energy Convers. Manag. 2017, 148, 692–700. DOI: 10.1016/j.enconman.2017.06.012.
  • Ghosh, A.; Ghosh, S.; Seshadhri, G. M.; Ramaprabhu, S. Green Synthesis of Nitrogen- Doped Self-Assembled Porous Carbon-Metal Oxide Composite towards Energy and Environmental Applications. Sci. Rep 2019, 9, 1–13.
  • Iftikhar, S.; Warsi, M. F.; Haider, S.; Musaddiq, S.; Shakir, I.; Shahid, M. The Impact of Carbon Nanotubes on the Optical, Electrical, and Magnetic Parameters of Ni2+ and Co2+ Based Spinel Ferrites. Ceram. Int. 2019, 45, 21150–21161. DOI: 10.1016/j.ceramint.2019.07.092.
  • Ateia, E. E.; Abdelmaksoud, M. K.; · Arman, M. M.; Shafaay, A. S. Comparative Study on the Physical Propertiesof Rare‑Earth‑Substituted Nano‑Sized CoFe2O4. Appl. Phys. A 2020, 126, 91. DOI: 10.1007/s00339-020-3282-5.
  • Ateia, E. E.; Soliman, F. S. Materials Science & Engineering B Multiferroic Properties of Gd/Er Doped Chromium Ferrite Nano Sized Particles Synthesized by Citrate Auto Combustion Method. Mater Sci. Eng. B 2019, 244, 29–37. DOI: 10.1016/j.mseb.2019.04.016.
  • Routray, K. L.; Saha, S.; Behera, D. Materials Science & Engineering B Effect of CNTs Blending on the Structural, Dielectric and Magnetic Properties of Nanosized Cobalt Ferrite. Mater Sci. Eng. B 2017, 226, 199–205. DOI: 10.1016/j.mseb.2017.09.021.
  • Rana, K.; Thakur, P.; Sharma, P.; Tomar, M.; Gupta, V.; Thakur, A. Improved Structural and Magnetic Properties of Cobalt Nanoferrites : In fl Uence of Sintering Temperature. Ceram. Int. 2015, 41, 4492–4497. DOI: 10.1016/j.ceramint.2014.11.143.
  • Nongjai, R.; Khan, S.; Khan, I.; Kandasami, A. Magnetic and Electrical Properties of in Doped Cobalt Ferrite Nanoparticles Magnetic and Electrical Properties of in Doped Cobalt Ferrite Nanoparticles. J. Appl. Phys. 2012, 112, 084321–084329. DOI: 10.1063/1.4759436.
  • Deng, J.; Shao, Y.; Gao, N.; Tan, C.; Zhou, S.; Hu, X. CoFe2O4 Magnetic Nanoparticles as a Highly Active Heterogeneous Catalyst of Oxone for the Degradation of Diclofenac in Water CoFe 2 O 4 Magnetic Nanoparticles as a Highly Active Heterogeneous Catalyst of Oxone for the Degradation of Diclofenac in Water. J. Hazard. Mater. 2017, 262, 836–844. DOI: 10.1016/j.jhazmat.2013.09.049.
  • Ateia, E. E.; Mohamed, A. T. Nonstoichiometry and Phase Stability of Al and Cr Substituted Mg Ferrite Nanoparticles Synthesized by Citrate Method. J. Magn. Magn. Mater. 2017, 426, 217–224. DOI: 10.1016/j.jmmm.2016.11.053.
  • Maghrebi, M.; Khodadadi, A. A.; Mortazavi, Y.; Rahimi, M.; Sane, A.; Tsakadze, Z.; Mhaisalkar, S. The Effects of Carrier Gas and Liquid Feed Flow Rates on Longitudinal Patterns of CNT Growth. Mater. Chem. Phys. 2010, 124, 1139–1145. DOI: 10.1016/j.matchemphys.2010.08.048.
  • Arenas-Alatorre, J.; Tehuacanero, C. S.; Lukas, O.; Rodríguez-Gómez, A.; Hernández, R. R.; Tapia-del León, C.; Lara, V. J. Synthesis and Characterization of Iron Oxide Nanoparticles Grown via a Non-Conventional Chemical Method Using an External Magnetic Field. Mater Lett. 2019, 242, 13–16. DOI: 10.1016/j.matlet.2019.01.098.
  • Xu, Y.; Li, Z.; Dervishi, E.; Saini, V.; Cui, J.; Biris, A. R.; Lupu, D.; Biris, A. S. Surface Area and Thermal Stability Effect of the MgO Supported Catalysts for the Synthesis of Carbon Nanotubes. J. Mater. Chem. 2008, 18, 5738–5745. DOI: 10.1039/b812630e.
  • Gohier, A.; Ewels, C. P.; Minea, T. M.; Djouadi, M. A. Djouadi Carbon Nanotube Growth Mechanism Switches from Tip to Base-Growth with Decreasing Catalyst Particle Size. Carbon 2008, 46, 1331–1338. DOI: 10.1016/j.carbon.2008.05.016.
  • Jouyandeh, M.; Zarrintaj, P.; Ganjali, M. R.; Ali, J. A.; Karimzadeh, I.; Aghazadeh, M.; Ghaffari, M.; Saeb, M. R. Curing Epoxy with Electrochemically Synthesized GdxFe3-xO4 Magnetic Nanoparticles. Prog. Org. Coatings 2019, 136, 105245. DOI: 10.1016/j.porgcoat.2019.105245.
  • Deepty, M.; Srinivas, C.; Kumar, E. R.; Mohan, N. K.; Prajapat, C. L.; Rao, T. V.; Ch Meena, S. H. S.; Verma, A. K.; Sastry, D. L. XRD, EDX, FTIR and ESR Spectroscopic Studies of co-Precipitated Mn–Substituted Zn–Ferrite Nanoparticles. Ceram. Int 2019, 45, 8037–8044. DOI: 10.1016/j.ceramint.2019.01.029.
  • Moorthy, S. K.; Ashok, C. H.; Rao, K. V.; Viswanathan, C. Synthesis and Characterization of MgO Nanoparticles by Neem Leaves through Green Method. Mater. Today Proc. 2015, 2, 4360–4368. DOI: 10.1016/j.matpr.2015.10.027.
  • Kulkarni, A. B.; Mathad, S. N. Variation in Structural and Mechanical Properties of Cd-Doped Co-Zn Ferrites. Mater. Sci. Energy Technol. 2019, 2, 455–462. DOI: 10.1016/j.mset.2019.03.003.
  • Rathod, V.; Anupama, A. V.; Kumar, R. V.; Jali, V. M.; Sahoo, B. Correlated Vibrations of the Tetrahedral and Octahedral Complexes and Splitting of the Absorption Bands in FTIR Spectra of Li-Zn Ferrites. Vib. Spectrosc 2017, 92, 267–272. DOI: 10.1016/j.vibspec.2017.08.008.
  • Das, R.; Hamid, S.; Ali, M.; Ramakrishna, S.; Yongzhi, W. Carbon Nanotubes Characterization by X-Ray Powder Diffraction – A Review. Cnano. 2014, 11, 23–35. DOI: 10.2174/1573413710666140818210043.
  • Morsy, M.; Helal, M.; El-Okr, M.; Ibrahim, M. Preparation, Purification and Characterization of High Purity Multi-Wall Carbon Nanotube. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 132, 594–598. DOI: 10.1016/j.saa.2014.04.122.
  • Morsy, M.; Yahia, I. S.; Zahran, H. Y.; Ibrahim, M. Low Cost Alcoholic Breath Sensor Based on SnO 2 Modified with CNTs. J. Korean Phys. Soc. 2018, 73, 1437–1443. DOI: 10.3938/jkps.73.1437.
  • Heidari, M.; Varma, R.; Ahmadian, M.; Pourkhosravani, M.; Asadzadeh, S.; Karimi, P.; Khatami, M. Photo-Fenton like Catalyst System : Activated Carbon/CoFe2O4 Nanocomposite for Reactive Dye Removal from Textile Wastewater. App.l Sci 2019, 9, 963. DOI: 10.3390/app9050963.
  • De Química, D.; Federal, U.; Gerais, D. M. Short Report. J. Braz. Chem. Soc. 2015, 26, 2379–2383.
  • Yuca, N.; Karatepe, N.; Yakuphanoğlu, F.; Gürsel, Y. H. Thermal and Electrical Properties of Carbon Nanotube Based Materials. Acta Phys. Pol. A 2013, 123, 352–354. DOI: 10.12693/APhysPolA.123.352.
  • Smith, M. W.; Dallmeyer, I.; Johnson, T. J.; Brauer, C. S.; McEwen, J.; Espinal, J. F.; Perez, M. G. Structural Analysis of Char by Raman Spectroscopy: Improving Band Assignments through First Principle Computational Calculations. Carbon 2016, 100, 678–692. DOI: 10.1016/j.carbon.2016.01.031.
  • Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Determination of Nanotubes Properties by Raman Spectroscopy. Phil. Trans. R. Soc. Lond. A 2004, 362, 2311–2336. DOI: 10.1098/rsta.2004.1443.
  • Kumar, V.; Kalia, S.; Swart, H. C. Conducting Polymer Hybrids, Springer International Publishing: Switzerland, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.