323
Views
15
CrossRef citations to date
0
Altmetric
Articles

Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge

, , , , &
Pages 846-856 | Received 25 Apr 2020, Accepted 22 May 2020, Published online: 02 Jun 2020

References

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Chun, L.; Gaoquan, S. Three-Dimensional Graphene Architectures. Nanoscale 2012, 4, 5549–5563. DOI: 10.1039/C2NR31467C.
  • Page, A.; Ding, F.; Irle, S.; Morokuma, K. Insights into Carbon Nanotube and Graphene Formation Mechanisms from Molecular Simulations: A Review. Rep. Prog. Phys. 2015, 78, 036501. DOI: 10.1088/0034-4885/78/3/036501.
  • Zhu, Y.; Ji, H.; Cheng, H.-M.; Ruoff, R. S. Mass Production and Industrial Applications of Graphene Materials. Nat. Sci. Rev. 2018, 5, 90–101. DOI: 10.1093/nsr/nwx055.
  • Kumar, R.; Joanni, E.; Singh, R. K.; Singh, D. P.; Moshkalev, S. A. Recent Advances in the Synthesis and Modification of Carbon-Based 2D Materials for Application in Energy Conversion and Storage. Prog. Energy Combust. Sci. 2018, 67, 115–157. DOI: 10.1016/j.pecs.2018.03.001.
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Kar, K. K.; Matsuda, A. Recent Progress in the Synthesis of Graphene and Derived Materials for Next Generation Electrodes of High Performance Lithium Ion Batteries. Prog. Energy Combust. Sci. 2019, 75, 100786. DOI: 10.1016/j.pecs.2019.100786.
  • Jayasena, B.; Subbiah, S. A Novel Mechanical Cleavage Method for Synthesizing Few-Layer Graphenes. Nanoscale Res. Lett. 2011, 6, 95. DOI: 10.1186/1556-276X-6-95.
  • Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. DOI: 10.1021/nl801827v.
  • Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Van Tendeloo, G.; Vanhulsel, A.; Van Haesendonck, C. Synthesis of Few-Layer Graphene via Microwave Plasma-Enhanced Chemical Vapour Deposition. Nanotechnology 2008, 19, 305604. DOI: 10.1088/0957-4484/19/30/305604.
  • Jernigan, G. G.; VanMil, B. L.; Tedesco, J. L.; Tischler, J. G.; Glaser, E. R.; Davidson, A., III; Campbell, P. M.; Gaskill, D. K. Comparison of Epitaxial Graphene on Si-Face and C-Face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production. Nano Lett. 2009, 9, 2605–2609. DOI: 10.1021/nl900803z.
  • Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J.; et al. Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nat. Mater. 2009, 8, 203–207. DOI: 10.1038/nmat2382.
  • Subrahmanyam, K.; Panchakarla, L.; Govindaraj, A.; Rao, C. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. J. Phys. Chem. C 2009, 113, 4257–4259. DOI: 10.1021/jp900791y.
  • Kumar, R.; Singh, R. K.; Dubey, P. K.; Yadav, R. M.; Singh, D. P.; Tiwari, R.; Srivastava, O. Highly Zone-Dependent Synthesis of Different Carbon Nanostructures Using Plasma-Enhanced Arc Discharge Technique. J. Nanopart. Res. 2015, 17, 24. DOI: 10.1007/s11051-014-2837-9.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Dato, A. Graphene Synthesized in Atmospheric Plasmas—A Review. J. Mater. Res. 2019, 34, 214–230. DOI: 10.1557/jmr.2018.470.
  • Moreno-Couranjou, M.; Monthioux, M.; Gonzalez-Aguilar, J.; Fulcheri, L. A Non-Thermal Plasma Process for the Gas Phase Synthesis of Carbon Nanoparticles. Carbon 2009, 47, 2310–2321. DOI: 10.1016/j.carbon.2009.04.003.
  • Kortshagen, U. R.; Sankaran, R. M.; Pereira, R. N.; Girshick, S. L.; Wu, J. J.; Aydil, E. S. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem. Rev. 2016, 116, 11061–11127. DOI: 10.1021/acs.chemrev.6b00039.
  • Zielinski, T.; Kijenski, J. Plasma Carbon Black—The New Active Additive for Plastics. Compos. Part A Appl. Sci. Manuf. 2005, 36, 467–471. DOI: 10.1016/j.compositesa.2004.10.007.
  • Gonzalez-Aguilar, J.; Moreno, M.; Fulcheri, L. Carbon Nanostructures Production by Gas-Phase Plasma Processes at Atmospheric Pressure. J. Phys. D Appl. Phys. 2007, 40, 2361–2374. DOI: 10.1088/0022-3727/40/8/S16.
  • Wu, A.; Yan, J.; Zhang, H.; Zhang, M.; Du, C.; Li, X. Study of the Dry Methane Reforming Process Using a Rotating Gliding Arc Reactor. Int. J. Hydrogen Energy 2014, 39, 17656–17670. DOI: 10.1016/j.ijhydene.2014.08.036.
  • Wu, A.; Li, X.; Yan, J.; Yang, J.; Du, C.; Zhu, F.; Qian, J. Co-Generation of Hydrogen and Carbon Aerosol from Coalbed Methane Surrogate Using Rotating Gliding Arc Plasma. Appl. Energy 2017, 195, 67–79. DOI: 10.1016/j.apenergy.2017.03.043.
  • Wu, A.; Chen, H.; Zheng, J.; Yang, J.; Li, X.; Du, C.; Chen, Z.; Xu, A.; Qiu, J.; Xu, Y.; Yan, J. Conversion of Coalbed Methane Surrogate into Hydrogen and Graphene Sheets Using Rotating Gliding Arc Plasma. Plasma Sci. Technol. 2019, 21, 115501. DOI: 10.1088/2058-6272/ab21a2.
  • Zhong, R.; Hong, R. Continuous Preparation and Formation Mechanism of Few-Layer Graphene by Gliding Arc Plasma. Chem. Eng. J. 2020, 387, 124102. DOI: 10.1016/j.cej.2020.124102.
  • Wang, Y.; Yang, H.; Tu, X. Plasma Reforming of Naphthalene as a Tar Model Compound of Biomass Gasification. Energy Convers. Manage 2019, 187, 593–604. DOI: 10.1016/j.enconman.2019.02.075.
  • Tu, X.; Whitehead, J. C. Plasma Dry Reforming of Methane in an Atmospheric Pressure AC Gliding Arc Discharge: Co-Generation of Syngas and Carbon Nanomaterials. Int. J. Hydrogen Energy 2014, 39, 9658–9669. DOI: 10.1016/j.ijhydene.2014.04.073.
  • Wang, C.; Lu, Z.; Li, D.; Xia, W.; Xia, W. Effect of the Magnetic Field on the Magnetically Stabilized Gliding Arc Discharge and Its Application in the Preparation of Carbon Black Nanoparticles. Plasma Chem. Plasma Process. 2018, 38, 1223–1238. DOI: 10.1007/s11090-018-9915-1.
  • Fabry, F.; Flamant, G.; Fulcheri, L. Carbon Black Processing by Thermal Plasma. Analysis of the Particle Formation Mechanism. Chem. Eng. Sci. 2001, 56, 2123–2132. DOI: 10.1016/S0009-2509(00)00486-3.
  • Wang, F.; Hong, R. Continuous Preparation of Structure-Controlled Carbon Nanoparticle via Arc Plasma and the Reinforcement of Polymeric Composites. Chem. Eng. J. 2017, 328, 1098–1111. DOI: 10.1016/j.cej.2017.07.085.
  • Vander Wal, R. L.; Yezerets, A.; Currier, N. W.; Kim, D. H.; Wang, C. M. HRTEM Study of Diesel Soot Collected from Diesel Particulate Filters. Carbon 2007, 45, 70–77. DOI: 10.1016/j.carbon.2006.08.005.
  • Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. DOI: 10.1103/physrevlett.97.187401.
  • Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.
  • Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. DOI: 10.1016/j.physrep.2009.02.003.
  • Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. DOI: 10.1039/b613962k.
  • Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. DOI: 10.1038/nnano.2013.46.
  • Singh, M.; Sengupta, A.; Zeller, K.; Skoptsov, G.; Vander Wal, R. L. Effect of Hydrogen Concentration on Graphene Synthesis Using Microwave-Driven Plasma-Mediated Methane Cracking. Carbon 2019, 143, 802–813. DOI: 10.1016/j.carbon.2018.11.082.
  • Zafar, Z.; Zhen, H. N.; Xing, W.; Zhi, X. S.; Hai, Y. N.; Jing, B.; Li, T. S. Evolution of Raman Spectra in Nitrogen Doped Graphene. Carbon 2013, 61, 57–62. DOI: 10.1016/j.carbon.2013.04.065.
  • Frenklach, M. Reaction Mechanism of Soot Formation in Flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. DOI: 10.1039/b110045a.
  • Ivan, V.; Murari, R.; Pasquale, F.; Sheng, D.; Panos, D.; Gyula, E.; Sergei, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 2011, 5, 6069–6076.
  • Lin, L.; Deng, B.; Sun, J.; Peng, H.; Liu, Z. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chem. Rev. 2018, 118, 9281–9343. DOI: 10.1021/acs.chemrev.8b00325.
  • Shen, B.; Ding, J.; Yan, X.; Feng, W.; Li, J.; Xue, Q. Influence of Different Buffer Gases on Synthesis of Few-Layered Graphene by Arc Discharge Method. Appl. Surf. Sci. 2012, 258, 4523–4531. DOI: 10.1016/j.apsusc.2012.01.019.
  • Li, B.; Song, X.; Zhang, P. Raman-Assessed Structural Evolution of as-Deposited Few-Layer Graphene by He/H2 Arc Discharge during Rapid-Cooling Thinning Treatment. Carbon 2014, 66, 426–435. DOI: 10.1016/j.carbon.2013.09.018.
  • Zhang, D.; Ye, K.; Yao, Y.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y.; Watanabe, T. Controllable Synthesis of Carbon Nanomaterials by Direct Current Arc Discharge from the Inner Wall of the Chamber. Carbon 2019, 142, 278–284. DOI: 10.1016/j.carbon.2018.10.062.
  • Zhang, H.; Du, C.; Wu, A.; Bo, Z.; Yan, J.; Li, X. Rotating Gliding Arc Assisted Methane Decomposition in Nitrogen for Hydrogen Production. Int. J. Hydrogen Energy 2014, 39, 12620–12635. DOI: 10.1016/j.ijhydene.2014.06.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.