195
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Nanoscale inspection on carbon particles from commercial RP-3 kerosene combustion with different dilutions

, ORCID Icon, , , &
Pages 959-972 | Received 10 May 2020, Accepted 20 Jun 2020, Published online: 15 Jul 2020

References

  • Pourhoseini, S. H.; Saeedi, A.; Moghiman, M. Experimental and Numerical Study on the Effect of Soot Injection on NOx Reduction and Radiation Enhancement in a Natural Gas Turbulent Flame. Arab. J. Sci. Eng. 2013, 38, 69–75. DOI: 10.1007/s13369-012-0412-1.
  • Pourhoseini, S. H.; Moghiman, M. Experimental and Numerical Investigation into Enhancing Radiation Characteristics of Natural-Gas Flame by Injection of Micro Kerosene Droplets. J. Enh. Heat Transf. 2014, 21, 407–423. DOI: 10.1615/JEnhHeatTransf.2015011735.
  • Pourhoseini, S. H.; Moghiman, M. Effect of Pulverized Anthracite Coal Particles Injection on Thermal and Radiative Characteristics of Natural Gas Flame: An Experimental Study. Fuel 2015, 140, 44–49. DOI: 10.1016/j.fuel.2014.09.056.
  • Pourhoseini, S. H. A Novel Configuration of Natural Gas Diffusion Burners to Enhance Optical, Thermal and Radiative Characteristics of Flame and Reduce NOx Emission. Energy 2017, 132, 41–48. DOI: 10.1016/j.energy.2017.04.167.
  • Goyal, P.; Jaiswal, N.; Kumar, A.; Dadoo, J. K.; Dwarakanath, M. Air Quality Impact Assessment of NOx and PM Due to Diesel Vehicles in Delhi. Transportation Research Part D: Transport and Environment 2010, 15, 298–303. DOI: 10.1016/j.trd.2010.03.002.
  • Pourazar, J.; Frew, A. J.; Blomberg, A.; Helleday, R.; Kelly, F. J.; Wilson, S.; Sandström, T. Diesel Exhaust Exposure Enhances the Expression of IL-13 in the Bronchial Epithelium of Healthy Subjects. Respir. Med. 2004, 98, 821–825. DOI: 10.1016/j.rmed.2004.02.025.
  • Ghoniem, A. F. Needs, Resources and Climate Change: Clean and Efficient Conversion Technologies. Prog. Energy Combust. Sci. 2011, 37, 15–51. DOI: 10.1016/j.pecs.2010.02.006.
  • Cheng, X.; Chen, L.; Hong, G.; Yan, F.; Dong, S. Modeling Study of Soot Formation and Oxidation in DI Diesel Engine Using an Improved Soot Model. Appl. Therm. Eng. 2014, 62, 303–312. DOI: 10.1016/j.applthermaleng.2013.09.052.
  • Mendiara, T.; Alzueta, M. U.; Millera, A.; Bilbao, R. Influence of the NO Concentration and the Presence of Oxygen in the Acetylene Soot Reaction with NO. Energy Fuels 2008, 22, 284–290. DOI: 10.1021/ef700580t.
  • Stanmore, B. R.; Brilhac, J. F.; Gilot, P. The Oxidation of Soot: A Review of Experiments, Mechanisms and Models. Carbon 2001, 39, 2247–2268. DOI: 10.1016/S0008-6223(01)00109-9.
  • Oh, K. C.; Shin, H. D. The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Non-Premixed Flames. Fuel 2006, 85, 615–624. DOI: 10.1016/j.fuel.2005.08.018.
  • Angrill, O.; Geitlinger, H.; Streibel, T.; Suntz, R.; Bockhorn, H. Influence of Exhaust Gas Recirculation on Soot Formation in Diffusion Flames. Proc. Combust. Inst. 2000, 28, 2643–2649. DOI: 10.1016/S0082-0784(00)80683-9.
  • Zhang, C.; Atreya, A.; Lee, K. Sooting Structure of Methane Counterflow Diffusion Flames with Preheated Reactants and Dilution by Products of Combustion. Symp. (Int) Combust. 1992, 24, 1049–1057. DOI: 10.1016/S0082-0784(06)80124-4.
  • Du, D. X.; Axelbaum, R. L.; Law, C. K. The Influence of Carbon Dioxide and Oxygen as Additives on Soot Formation in Diffusion Flames. Symp. (Int) Combust. 1991, 23, 1501–1507. DOI: 10.1016/S0082-0784(06)80419-4.
  • Oh, K. C.; Shin, H. D. The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique. J. Mech. Sci. Technol. 2005, 19, 2068–2076. DOI: 10.1007/BF02916500.
  • Liu, F. S.; Guo, H. S.; Smallwood, G. J.; Gulder, O. L. The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx Formation. Combust. Flame 2001, 125, 778–787. DOI: 10.1016/S0010-2180(00)00241-8.
  • Ying, Y.; Liu, D. Nanostructure Evolution and Reactivity of Nascent Soot from Inverse Diffusion Flames in CO2, N2, and He Atmospheres. Carbon 2018, 139, 172–180. DOI: 10.1016/j.carbon.2018.06.047.
  • Abhinavam Kailasanathan, R. K.; Zhang, J.; Fang, T.; Roberts, W. L. Effects of Diluents on Soot Surface Temperature and Volume Fraction in Diluted Ethylene Diffusion Flames at Pressure. Combust. Sci. Technol. 2014, 186, 815–828. DOI: 10.1080/00102202.2013.878710.
  • Abhinavam Kailasanathan, R. K.; Yelverton, T. L. B.; Fang, T.; Roberts, W. L. Effect of Diluents on Soot Precursor Formation and Temperature in Ethylene Laminar Diffusion Flames. Combust. Flame 2013, 160, 656–670. DOI: 10.1016/j.combustflame.2012.11.004.
  • Zhao, H.; Stone, R.; Williams, B. Investigation of the Soot Formation in Ethylene Laminar Diffusion Flames When Diluted with Helium or Supplemented by Hydrogen. Energy Fuels 2014, 28, 2144–2151. DOI: 10.1021/ef401970q.
  • Abián, M.; Millera, A.; Bilbao, R.; Alzueta, M. U. Effect of Recirculation Gases on Soot Formed from Ethylene Pyrolysis. Combust. Sci. Technol. 2012, 184, 980–994. DOI: 10.1080/00102202.2012.663990.
  • Abián, M.; Millera, A.; Bilbao, R.; Alzueta, M. U. Experimental Study on the Effect of Different CO2 Concentrations on Soot and Gas Products from Ethylene Thermal Decomposition. Fuel 2012, 91, 307–312. DOI: 10.1016/j.fuel.2011.06.064.
  • Teini, P. D.; Karwat, D. M. A.; Atreya, A. The Effect of CO2/H2O on the Formation of Soot Particles in the Homogeneous Environment of a Rapid Compression Facility. Combust. Flame 2012, 159, 1090–1099. DOI: 10.1016/j.combustflame.2011.10.002.
  • Saikia, B. K.; Boruah, R. K.; Gogoi, P. K. A X-Ray Diffraction Analysis on Graphene Layers of Assam Coal. J. Chem. Sci. 2009, 121, 103–106. DOI: 10.1007/s12039-009-0012-0.
  • Wertz, D. L.; Bissell, M. One-Dimensional Description of the Average Polycyclic Aromatic Unit in Pocahontas No. 3 Coal: An X-Ray Scattering Study. Fuel 1995, 74, 1431–1435. DOI: 10.1016/0016-2361(95)00107-G.
  • Saikia, B. K. Inference on Carbon Atom Arrangement in the Turbostatic Graphene Layers in Tikak Coal (India) by X-Ray Pair Distribution Function Analysis. Ijogct. 2010, 3, 362–373. DOI: 10.1504/IJOGCT.2010.037465.
  • Boruah, R. K.; Saikia, B. K.; Baruah, B. P.; Dey, N. C. X-Ray Scattering Study of the Average Polycyclic Aromatic Unit in Ledo Coal. J. Appl. Crystallogr. 2008, 41, 27–30. DOI: 10.1107/S0021889807049655.
  • Jia, P.; Liu, D.; Ying, Y.; Luo, M.; Jiang, B.; Zhang, R. Nanostructure and Reactivity of Nascent Carbon Particles from 2,5-Dimethylfuran/n-Heptane Swirling Inverse Diffusion Flames. Fuller Nanotub Car N. 2019, 27, 106–119. DOI: 10.1080/1536383X.2018.1516642.
  • Jia, P.; Ying, Y.; Luo, M.; Jiang, B.; Liu, D. Effects of Swirling Combustion on Soot Characteristics in 2,5-Dimethylfuran/n-Heptane Diffusion Flames. Appl. Therm. Eng. 2018, 139, 11–24. DOI: 10.1016/j.applthermaleng.2018.04.049.
  • Paladpokkrong, C.; Liu, D.; Ying, Y.; Wang, W.; Zhang, R. Soot Reduction by Addition of Dimethyl Carbonate in Normal and Inverse Ethylene Diffusion Flames: Nanostructural Evidence. J. Environ. Sci. (China) 2018, 72, 107–117. DOI: 10.1016/j.jes.2017.12.016.
  • Peña, G. D. J. G.; Raj, A.; Stephen, S.; Anjana, T.; Hammid, Y. A. S.; Brito, J. L.; Shoaibi, A. A. Physicochemical Properties of Soot Generated from Toluene Diffusion Flames: Effects of Fuel Flow Rate. Combust. Flame 2017, 178, 286–296. DOI: 10.1016/j.combustflame.2017.01.009.
  • Peña, G. D. J. G.; Rahman, R. K.; Raj, A.; Stephen, S.; Anjana, T.; Brito, J. L. Effect of Fuel Flow Rate on the Characteristics of Soot Generated from Unsubstituted and Disubstituted Aromatic Hydrocarbon Flames: Experimental and Numerical Study. Combust. Flame 2018, 190, 224–239. DOI: 10.1016/j.combustflame.2017.12.010.
  • Abdalla, A. O. G.; Ying, Y.; Jiang, B.; He, X.; Liu, D. Comparative Study on Characteristics of Soot from n-Decane and RP-3 Kerosene Normal/Inverse Diffusion Flames. J. Inst. Energy 2020, 93, 62–75. DOI: 10.1016/j.joei.2019.04.008.
  • Abdalla, A. O. G.; Liu, D.; Zhang, L.; Zhao, X.; Ying, Y.; Jiang, B.; He, X. Soot Formation and Evolution in RP-3 Kerosene Inverse Diffusion Flames: Effects of Flow Rates and Dimethyl Carbonate Additions. Fuel 2020, 273, 117732. DOI: 10.1016/j.fuel.2020.117732.
  • Khosousi, A.; Liu, F.; Dworkin, S. B.; Eaves, N. A.; Thomson, M. J.; He, X.; Dai, Y.; Gao, Y.; Liu, F.; Shuai, S.; et al. Experimental and Numerical Study of Soot Formation in Laminar Coflow Diffusion Flames of Gasoline/Ethanol Blends. Combust. Flame 2015, 162, 3925–3933. DOI: 10.1016/j.combustflame.2015.07.029.
  • Saffaripour, M.; Veshkini, A.; Kholghy, M.; Thomson, M. J. Experimental Investigation and Detailed Modeling of Soot Aggregate Formation and Size Distribution in Laminar Coflow Diffusion Flames of Jet A-1, a Synthetic Kerosene, and n-Decane. Combust. Flame 2014, 161, 848–863. DOI: 10.1016/j.combustflame.2013.10.016.
  • Jaramillo, I. C.; Gaddam, C. K.; Vander Wal, R. L.; Huang, C.-H.; Levinthal, J. D.; Lighty, J. S. Soot Oxidation Kinetics under Pressurized Conditions. Combust. Flame 2014, 161, 2951–2965. DOI: 10.1016/j.combustflame.2014.04.016.
  • Seong, H. J.; Boehman, A. L. Studies of Soot Oxidative Reactivity Using a Diffusion Flame Burner. Combust. Flame 2012, 159, 1864–1875. DOI: 10.1016/j.combustflame.2012.01.009.
  • Zhang, Y.; Boehman, A. L. Oxidation Behavior of Soot Generated from the Combustion of Methyl 2-Butenoate in a co-Flow Diffusion Flame. Combust. Flame 2013, 160, 112–119. DOI: 10.1016/j.combustflame.2012.08.010.
  • McEnally, C. S.; Köylü, Ü. Ö.; Pfefferle, L. D.; Rosner, D. E. Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples. Combust. Flame 1997, 109, 701–720. DOI: 10.1016/S0010-2180(97)00054-0.
  • Verma, P.; Pickering, E.; Savic, N.; Zare, A.; Brown, R.; Ristovski, Z. Comparison of Manual and Automatic Approaches for Characterisation of Morphology and Nanostructure of Soot Particles. J. Aerosol Sci. 2019, 136, 91–105. DOI: 10.1016/j.jaerosci.2019.07.001.
  • Savic, N.; Rahman, M. M.; Miljevic, B.; Saathoff, H.; Naumann, K. H.; Leisner, T.; Riches, J.; Gupta, B.; Motta, N.; Ristovski, Z. D. Influence of Biodiesel Fuel Composition on the Morphology and Microstructure of Particles Emitted from Diesel Engines. Carbon 2016, 104, 179–189. DOI: 10.1016/j.carbon.2016.03.061.
  • Rohani, B.; Bae, C. Effect of Exhaust Gas Recirculation (EGR) and Multiple Injections on Diesel Soot Nano-Structure and Reactivity. Appl. Therm. Eng. 2017, 116, 160–169. DOI: 10.1016/j.applthermaleng.2016.11.116.
  • Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. DOI: 10.1103/PhysRevB.5.4709.
  • Kent, J. H.; Wagner, H. G. Who Do Diffusion Flames Emit Smoke. Combust. Sci. Technol. 1984, 41, 245–269. DOI: 10.1080/00102208408923834.
  • Li, Y.; Cai, J.; Zhang, L.; Yuan, T.; Zhang, K.; Qi, F. Investigation on Chemical Structures of Premixed Toluene Flames at Low Pressure. Proc. Combust. Inst. 2011, 33, 593–600. DOI: 10.1016/j.proci.2010.05.033.
  • Frenklach, M. Reaction Mechanism of Soot Formation in Flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. DOI: 10.1039/b110045a.
  • Wang, H.; Frenklach, M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames. Combust. Flame 1997, 110, 173–221. DOI: 10.1016/S0010-2180(97)00068-0.
  • Oh, K. C.; Lee, U. D.; Shin, H. D.; Lee, E. J. The Evolution of Incipient Soot Particles in an Inverse Diffusion Flame of Ethene. Combust. Flame 2005, 140, 249–254. DOI: 10.1016/j.combustflame.2004.12.002.
  • Alfè, M.; Apicella, B.; Barbella, R.; Rouzaud, J. N.; Tregrossi, A.; Ciajolo, A. Structure–Property Relationship in Nanostructures of Young and Mature Soot in Premixed Flames. Proc. Combust. Inst. 2009, 32, 697–704. DOI: 10.1016/j.proci.2008.06.193.
  • Velásquez, M.; Mondragón, F.; Santamaría, A. Chemical Characterization of Soot Precursors and Soot Particles Produced in Hexane and Diesel Surrogates Using an Inverse Diffusion Flame Burner. Fuel 2013, 104, 681–690. DOI: 10.1016/j.fuel.2012.04.033.
  • Santamaria, A.; Yang, N.; Eddings, E.; Mondragon, F. Chemical and Morphological Characterization of Soot and Soot Precursors Generated in an Inverse Diffusion Flame with Aromatic and Aliphatic Fuels. Combust. Flame 2010, 157, 33–42. DOI: 10.1016/j.combustflame.2009.09.016.
  • Huang, C.-H.; Vander Wal, R. L. Partial Premixing Effects upon Soot Nanostructure. Combust. Flame 2016, 168, 403–408. DOI: 10.1016/j.combustflame.2016.01.006.
  • Vander Wal, R. L.; Strzelec, A.; Toops, T. J.; Stuart Daw, C.; Genzale, C. L. Forensics of Soot: C5-Related Nanostructure as a Diagnostic of in-Cylinder Chemistry. Fuel 2013, 113, 522–526. DOI: 10.1016/j.fuel.2013.05.104.
  • Grieco, W. J.; Howard, J. B.; Rainey, L. C.; Vander Sande, J. B. Fullerenic Carbon in Combustion-Generated Soot. Carbon 2000, 38, 597–614. DOI: 10.1016/S0008-6223(99)00149-9.
  • Li, X.; Xu, Z.; Guan, C.; Huang, Z. Impact of Exhaust Gas Recirculation (EGR) on Soot Reactivity from a Diesel Engine Operating at High Load. Appl. Therm. Eng. 2014, 68, 100–106. DOI: 10.1016/j.applthermaleng.2014.04.029.
  • Vander Wal, R. L.; Bryg, V. M.; Huang, C.-H. Aircraft Engine Particulate Matter: Macro- Micro- and Nanostructure by HRTEM and Chemistry by XPS. Combust. Flame 2014, 161, 602–611. DOI: 10.1016/j.combustflame.2013.09.003.
  • Gaddam, C. K.; Vander Wal, R. L. Physical and Chemical Characterization of SIDI Engine Particulates. Combust. Flame 2013, 160, 2517–2528. DOI: 10.1016/j.combustflame.2013.05.025.
  • Yehliu, K.; Vander Wal, R. L.; Armas, O.; Boehman, A. L. Impact of Fuel Formulation on the Nanostructure and Reactivity of Diesel Soot. Combust. Flame 2012, 159, 3597–3606. DOI: 10.1016/j.combustflame.2012.07.004.
  • Vander Wal, R. L.; Tomasek, A. J. Soot Oxidation: dependence upon Initial Nanostructure. Combust. Flame 2003, 134, 1–9. DOI: 10.1016/S0010-2180(03)00084-1.
  • Song, J.; Alam, M.; Boehman, A. L.; Kim, U. Examination of the Oxidation Behavior of Biodiesel Soot. Combust. Flame 2006, 146, 589–604. DOI: 10.1016/j.combustflame.2006.06.010.
  • Luo, M.; Liu, D. Effects of Hydrogen Addition on Nanostructure and Reactivity of Carbon Particles in Flame–Wall Interactions. Fuller., Nanotub. Car N. 2018, 26, 756–764. DOI: 10.1080/1536383X.2018.1497608.
  • Jiang, B.; Wang, P. F.; Ying, Y. Y.; Luo, M. Y.; Liu, D. Nanoscale Characteristics and Reactivity of Nascent Soot from n-Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields. Energies 2018, 11, 1698. DOI: 10.3390/en11071698.
  • Oberlin, A. Application of Dark-Field Electron Microscopy to Carbon Study. Carbon 1979, 17, 7–20. DOI: 10.1016/0008-6223(79)90065-4.
  • Pantea, D.; Brochu, S.; Thiboutot, S.; Ampleman, G.; Scholz, G. A Morphological Investigation of Soot Produced by the Detonation of Munitions. Chemosphere 2006, 65, 821–831. DOI: 10.1016/j.chemosphere.2006.03.027.
  • Chen, H. X.; Dobbins, R. A. Crystallogenesis of Particles Formed in Hydrocarbon Combustion. Combust. Sci. Technol. 2000, 159, 109–128. DOI: 10.1080/00102200008935779.
  • Gogoi, B.; Raj, A.; Alrefaai, M. M.; Stephen, S.; Anjana, T.; Pillai, V.; Bojanampati, S. Effects of 2,5-Dimethylfuran Addition to Diesel on Soot Nanostructures and Reactivity. Fuel 2015, 159, 766–775. DOI: 10.1016/j.fuel.2015.07.038.
  • Raj, A.; Tayouo, R.; Cha, D.; Li, L.; Ismail, M. A.; Chung, S. H. Thermal Fragmentation and Deactivation of Combustion-Generated Soot Particles. Combust. Flame 2014, 161, 2446–2457. DOI: 10.1016/j.combustflame.2014.02.010.
  • Sheng, C. Char Structure Characterised by Raman Spectroscopy and Its Correlations with Combustion Reactivity. Fuel 2007, 86, 2316–2324. DOI: 10.1016/j.fuel.2007.01.029.
  • Sharma, A.; Kyotani, T.; Tomita, A. Comparison of Structural Parameters of PF Carbon from XRD and HRTEM Techniques. Carbon 2000, 38, 1977–1984. DOI: 10.1016/S0008-6223(00)00045-2.
  • Wang, L.; Song, C.; Song, J.; Lv, G.; Pang, H.; Zhang, W. Aliphatic C–H and Oxygenated Surface Functional Groups of Diesel in-Cylinder Soot: Characterizations and Impact on Soot Oxidation Behavior. Proc. Combust. Inst. 2013, 34, 3099–3106. DOI: 10.1016/j.proci.2012.07.052.
  • Liu, Y.; Song, C.; Lv, G.; Cao, X.; Wang, L.; Qiao, Y.; Yang, X. Surface Functional Groups and sp3/sp2 Hybridization Ratios of in-Cylinder Soot from a Diesel Engine Fueled with n-Heptane and n-Heptane/Toluene. Fuel 2016, 179, 108–113. DOI: 10.1016/j.fuel.2016.03.082.
  • Collura, S.; Chaoui, N.; Azambre, B.; Finqueneisel, G.; Heintz, O.; Krzton, A.; Koch, A.; Weber, J. V. Influence of the Soluble Organic Fraction on the Thermal Behaviour, Texture and Surface Chemistry of Diesel Exhaust Soot. Carbon 2005, 43, 605–613. DOI: 10.1016/j.carbon.2004.10.026.
  • Vander Wal, R. L.; Tomasek, A. J. Soot Nanostructure: dependence upon Synthesis Conditions. Combust. Flame 2004, 136, 129–140. DOI: 10.1016/j.combustflame.2003.09.008.
  • Raj, A.; Yang, S. Y.; Cha, D.; Tayouo, R.; Chung, S. H. Structural Effects on the Oxidation of Soot Particles by O2: Experimental and Theoretical Study. Combust. Flame 2013, 160, 1812–1826. DOI: 10.1016/j.combustflame.2013.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.