232
Views
3
CrossRef citations to date
0
Altmetric
Articles

The influence of the type of ions hydration on photoluminescence of carbon dots in aqueous suspensions

ORCID Icon, , , , &
Pages 67-73 | Received 07 Aug 2020, Accepted 13 Aug 2020, Published online: 28 Aug 2020

References

  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Molaei, M. J. Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review. Anal. Methods 2020, 12, 1266–1287. DOI: 10.1039/C9AY02696G.
  • Dolenko, T.; Burikov, S.; Laptinskiy, K.; Rosenholm, J. M.; Shenderova, O.; Vlasov, I. Evidence of Carbon Nanoparticle-Solvent Molecule Interactions in Raman and Fluorescence Spectra. Phys. Status Solidi A 2015, 212, 2512–2518. DOI: 10.1002/pssa.201532203.
  • Liu, Y.; Zhou, Q. Sensitive pH Probe Developed with Water-Soluble Fluorescent Carbon Dots from Chocolate by One-Step Hydrothermal Method. Int. J. Environ. Anal. Chem. 2017, 97, 1–13. DOI: 10.1080/03067319.2017.1385782.
  • Xu, H.; Yan, L.; Nguyen, V.; Yu, Y.; Xu, Y. One-Step Synthesis of Nitrogen-Doped Carbon Nanodots for Ratiometric pH Sensing by Femtosecond Laser Ablation Method. Appl. Surf. Sci. 2017, 414, 238–243. DOI: 10.1016/j.apsusc.2017.04.092.
  • Carvalho, J.; Santos, L. R.; Germino, J. C.; Terezo, A. J.; Moreto, J. A.; Quites, F. J.; Freitas, R. G. Hydrothermal Synthesis to Water-Stable Luminescent Carbon Dots from Acerola Fruit for Photoluminescent Composites Preparation and Its Application as Sensors. Mat. Res. 2019, 22, 1–8. DOI: 10.1590/1980-5373-mr-2018-0920.
  • Papaioannou, N.; Titirici, M.-M.; Sapelkin, A. Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega 2019, 4, 21658–21665. DOI: 10.1021/acsomega.9b01798.
  • Ogi, T.; Aishima, K.; Permatasari, F. A.; Iskandar, F.; Tanabe, E.; Okuyama, K. Kinetics of Nitrogen-Doped Carbon Dot Formation via Hydrothermal Synthesis. New J. Chem. 2016, 40, 5555–5561. DOI: 10.1039/C6NJ00009F.
  • Tomskaya, A. E.; Prosvirin, I. P.; Egorova, M. N.; Smagulova, S. A.; Asanov, I. P. Structural and Optical Properties of N-Doped and B-Doped Carbon Dots. J. Struct. Chem. 2020, 61, 818–825. DOI: 10.1134/s0022476620050194.
  • Jana, J.; Lee, H. J.; Chung, J. S.; Kim, M. H.; Hur, S. H. Blue Emitting Nitrogen-Doped Carbon Dots as a Fluorescent Probe for Nitrite Ion Sensing and Cell-Imaging. Anal. Chim. Acta 2019, 1079, 212–219. DOI: 10.1016/j.aca.2019.06.064.
  • Song, P.; Zhang, L.; Long, H.; Meng, M.; Liu, T.; Yin, Y.; Xi, R. A Multianalyte Fluorescent Carbon Dots Sensing System Constructed Based on Specific Recognition of Fe(III) Ions. RSC Adv. 2017, 7, 28637–28646. DOI: 10.1039/C7RA04122E.
  • Gong, X.; Lu, W.; Paau, M. C.; Hu, Q.; Wu, X.; Shuang, S.; Dong, C.; Choi, M. M. F. Facile Synthesis of Nitrogen-Doped Carbon Dots for Fe3+ Sensing and Cellular Imaging. Anal. Chim. Acta 2015, 861, 74–84. DOI: 10.1016/j.aca.2014.12.045.
  • Gao, Z.; Wang, L.; Su, R.; Huang, R.; Qi, W.; He, Z. A Carbon Dot-Based “Off-On” Fluorescent Probe for Highly Selective and Sensitive Detection of Phytic Acid. Biosens. Bioelectron. 2015, 70, 232–238. DOI: 10.1016/j.bios.2015.03.043.
  • Chaudhary, S.; Kumar, S.; Kaur, B.; Mehta, S. K. Potential Prospects for Carbon Dots as a Fluorescence Sensing Probe for Metal Ions. RSC Adv. 2016, 6, 90526–90536. DOI: 10.1039/C6RA15691F.
  • Zhang, Y.; Fang, X.; Zhao, H.; Li, Z. A Highly Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid Based on Nitrogen-Doped Carbon Dots. Talanta 2018, 181, 318–325. DOI: 10.1016/j.talanta.2018.01.027.
  • Huang, S.-W.; Lin, Y.-F.; Li, Y.-X.; Hu, C.-C.; Chiu, T.-C. Synthesis of Fluorescent Carbon Dots as Selective and Sensitive Probes for Cupric Ions and Cell Imaging. Molecules 2019, 24, 1785. DOI: 10.3390/molecules24091785.
  • Gao, X.; Lu, Y.; Zhang, R.; He, S.; Ju, J.; Liu, M.; Li, L.; Chen, W. One-Pot Synthesis of Carbon Nanodots for Fluorescence Turn-on Detection of Ag+ Based on the Ag+-Induced Enhancement of Fluorescence. J. Mater. Chem. C 2015, 3, 2302–2309. DOI: 10.1039/C4TC02582B.
  • Dolenko, T. A.; Burikov, S. A.; Rosenholm, J. M.; Shenderova, O. A.; Vlasov, I. I. Diamond–Water Coupling Effects in Raman and Photoluminescence Spectra of Nanodiamond Colloidal Suspensions. J. Phys. Chem. C 2012, 116, 24314–24319. DOI: 10.1021/jp306803n.
  • Ren, J.; Weber, F.; Weigert, F.; Wang, Y.; Choudhury, S.; Xiao, J.; Lauermann, I.; Resch-Genger, U.; Bande, A.; Petit, T. Influence of Surface Chemistry on Optical, Chemical and Electronic Properties of Blue Luminescent Carbon Dots. Nanoscale 2019, 11, 2056–2064. DOI: 10.1039/c8nr08595a.
  • Qu, S.; Zhou, D.; Li, D.; Ji, W.; Jing, P.; Han, D.; Liu, L.; Zeng, H.; Shen, D. Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp2-Domain Controlling and Surface Charges Engineering. Adv. Mater. 2016, 28, 3516–3521. DOI: 10.1002/adma.201504891.
  • Cushing, S. K.; Li, M.; Huang, F.; Wu, N. Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide. ACS Nano. 2014, 8, 1002–1013. DOI: 10.1021/nn405843d.
  • Vervald, A. M.; Burikov, S. A.; Shenderova, O. A.; Nunn, N.; Podkopaev, D. O.; Vlasov, I. I.; Dolenko, T. A. Relationship between Fluorescent and Vibronic Properties of Detonation Nanodiamonds and Strength of Hydrogen Bonds in Suspensions. J. Phys. Chem. C 2016, 120, 19375–19383. DOI: 10.1021/acs.jpcc.6b03500.
  • Petit, T.; Puskar, L.; Dolenko, T.; Choudhury, S.; Ritter, E.; Burikov, S.; Laptinskiy, K.; Brzustowski, Q.; Schade, U.; Yuzawa, H.; et al. Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. J. Phys. Chem. C 2017, 121, 5185–5194. DOI: 10.1021/acs.jpcc.7b00721.
  • Laptinskiy, K. A.; Bokarev, A. N.; Dolenko, S. A.; Plastun, I. L.; Sarmanova, O. E.; Shenderova, O. A.; Dolenko, T. A. The Energy of Hydrogen Bonds in Aqueous Suspensions of Nanodiamonds with Different Surface Functionalization. J. Raman Spectrosc. 2019, 50, 387–395. DOI: 10.1002/jrs.5524.
  • Samoilov, O. Y. A New Approach to the Study of Hydration of Ions in Aqueous Solutions. Discuss. Faraday Soc. 1957, 24, 141. DOI: 10.1039/df9572400141.
  • Chaplin, M. Water Structure and Behavior. http://www1.lsbu.ac.uk/water/ (accessed on Jul 8, 2020).
  • Hofmeister, F. Zur Lehre von der Wirkung der Salze [On the Doctrine of the Effects of Salts]. Arch. für Exp. Pathol. Pharmakol. 1888, 24, 247–260. DOI: 10.1007/BF01918191.
  • Gogolinskaia, T. A.; Patsaeva, S. V.; Fadeev, V. V. The Regularities of Change of the 3100–3700 cm−1 Band of Water Raman Scattering in Salt Aqueous Solutions. Dokl. Akad. Nauk SSSR 1986, 290, 1099–1103.
  • Terpstra, P.; Combes, D.; Zwick, A. Effect of Salts on Dynamics of Water: A Raman Spectroscopy Study. J. Chem Phys. 1990, 92, 65–70. DOI: 10.1063/1.458418.
  • Dolenko, T. A.; Churina, I. V.; Fadeev, V. V.; Glushkov, S. M. Valence Band of Liquid Water Raman Scattering: Some Peculiarities and Applications in the Diagnostics of Water Media. J. Raman Spectrosc. 2000, 31, 863–870. DOI: 10.1002/1097-4555(200008/09)31:8/9 < 863::aID-JRS630 > 3.0.CO;2-C.
  • Burikov, S. A.; Dolenko, T. A.; Fadeev, V. V.; Vlasov, I. I. Revelation of Ion Hydration in Raman Scattering Spectral Bands of Water. Laser Phys. 2007, 17, 1255–1261. DOI: 10.1134/S1054660X0710012X.
  • Leberman, R.; Soper, A. K. Effect of High Salt Concentrations on Water Structure. Nature 1995, 378, 364–366. DOI: 10.1038/378364a0.
  • Mezei, M.; Beveridge, D. L. Theoretical Studies of Hydrogen Bonding in Liquid Water and Dilute Aqueous Solutions. J. Chem. Phys. 1981, 74, 622–632. DOI: 10.1063/1.440819.
  • Urbic, T. Ions Increase Strength of Hydrogen Bond in Water. Chem. Phys. Lett. 2014, 610–611, 159–162. DOI: 10.1016/j.cplett.2014.06.054.
  • Tomskaya, A. E.; Egorova, M. N.; Kapitonov, A. N.; Nikolaev, D. V.; Popov, V. I.; Fedorov, A. L.; Smagulova, S. A. Synthesis of Luminescent N-Doped Carbon Dots by Hydrothermal Treatment. Phys. Status Sol. B 2018, 255, 1700222. DOI: 10.1002/pssb.201700222.
  • Jenkins, H. D. B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95, 2695–2724. DOI: 10.1021/cr00040a004.
  • Mizuno, K.; Miyashita, Y.; Shindo, Y.; Ogawa, H. N. FT-IR Studies of Hydrogen Bonds in Ethanol-Water Mixtures. J. Phys. Chem. 1995, 99, 3225–3228. DOI: 10.1021/j100010a037.
  • Wakisaka, A.; Matsuura, K. Microheterogeneity of Ethanol–Water Binary Mixtures Observed at the Cluster Level. J. Mol. Liq. 2006, 129, 25–32. DOI: 10.1016/j.molliq.2006.08.010.
  • Yang, D.; Wang, H. Effects of Hydrogen Bonding on the Transition Properties of Ethanol–Water Clusters: A TD-DFT Study. J. Clust. Sci. 2013, 24, 485–495. DOI: 10.1007/s10876-012-0514-7.
  • Suzuki, M. What is “Hypermobile” Water? Detected in Alkali Halide, Adenosine Phosphate, and F-Actin Solutions by High-Resolution Microwave Dielectric Spectroscopy. Pure Appl. Chem. 2014, 86, 181–189. DOI: 10.1515/pac-2014-5024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.