170
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Li adsorption on nitrogen-substituted graphyne for hydrogen storage

, &
Pages 212-217 | Received 22 Sep 2020, Accepted 25 Sep 2020, Published online: 08 Oct 2020

References

  • Schlapbach, L.; Züttel, A. Hydrogen-Storage Materials for Mobile Applications. Nature 2001, 414, 353–358. DOI: 10.1038/35104634.
  • Turner, J. A. A Realizable Renewable Energy Future. Science 1999, 285, 687–689. DOI: 10.1126/science.285.5428.687.
  • Van den Berg, A. W. C.; Arean, C. O. Materials for Hydrogen Storage: Current Research Trends and Perspectives. Chem. Commun. 2008, 6, 668–681.
  • Felderhoff, M.; Weidenthaler, C.; Helmolt, R. V.; Eberle, U. Hydrogen Storage: The Remaining Scientific and Technological Challenges. Phys. Chem. Chem. Phys. 2007, 9, 2643–2653. DOI: 10.1039/b701563c.
  • Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Infinite Coordination Polymer Nano- and Microparticle Structures. Chem. Soc. Rev. 2009, 38, 1218–1227. DOI: 10.1039/b807085g.
  • Blackman, J. M.; Patrick, J. M.; Snape, C. E. An Accurate Volumetric Differential Pressure Method for the Determination of Hydrogen Storage Capacity at High Pressures in Carbon Materials. Carbon 2006, 44, 918–927. DOI: 10.1016/j.carbon.2005.10.032.
  • Klontzas, E.; Tylianakis, E.; Froudakis, G. E. Designing 3D COFs with Enhanced Hydrogen Storage Capacity. Nano Lett. 2010, 10, 452–454. DOI: 10.1021/nl903068a.
  • Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Hydrogen Storage in single-walled carbon nanotubes at room temperature . Science 1999, 286, 1127–1129. DOI: 10.1126/science.286.5442.1127.
  • Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Lett. 2008, 8, 3166–3170. DOI: 10.1021/nl801417w.
  • Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure-Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. J. Chem. Phys. 1987, 87, 6687–6699. DOI: 10.1063/1.453405.
  • Luo, G.; Zheng, Q.; Mei, W.-N.; Lu, J.; Nagase, S. Structural, Electronic and Optical Properties of Bulk Graphdiyne. J. Phys. Chem. C. 2013, 117, 13072–13079. DOI: 10.1021/jp402218k.
  • Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.; Gao, Z.; Nagase, S.; Lu, J. Structural and Electronic Properties of Bilayer and Trilayer Graphdiyne. Nanoscale 2012, 4, 3990–3996. DOI: 10.1039/c2nr12026g.
  • Coluci, V. R.; Braga, S. F.; Legoas, S. B.; Galvao, D. S.; Baughman, R. H. Families of Carbon Nanotubes: grapyne-Based Nanotubes. Phys. Rev. B. 2003, 68, 035430–035431. 6. DOI: 10.1103/PhysRevB.68.035430.
  • Baughman, R. H.; Galvao, D. S.; Cui, C. X.; Wang, Y.; Tomanek, D. Fullereneynes: A New Family of Porous Fullerenes. Chem. Phys. Lett. 1993, 204, 8–14. DOI: 10.1016/0009-2614(93)85598-I.
  • Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of Graphdiyne Nanoscale Films. Chem. Commun. (Camb.) 2010, 46, 3256–3258. DOI: 10.1039/b922733d.
  • Qian, X.; Ning, Z.; Li, Y.; Liu, H.; Ouyang, C.; Chen, Q.; Li, Y. Construction of Graphdiyne Nanowires with High-Conductivity and Mobility. Dalt. Trans. 2012, 41, 730–733. DOI: 10.1039/C1DT11641J.
  • Li, G.; Li, Y.; Qian, X.; Liu, H.; Lin, H.; Chen, N.; Li, Y. Construction of Tubular Molecular Aggregations of Graphdiyne for Highly Efficient Field Emission. J. Phys. Chem. C. 2011, 115, 2611–2615. DOI: 10.1021/jp107996f.
  • Xu, B.; Lei, X. L.; Liu, G.; Wu, M. S.; Ouyang, C. Y. Li-Decorated Graphyne as High-Capacity Hydrogen Storage Media: First-Principles Plane Wave Calculations. Int. J. Hydrogen Energy 2014, 39, 17104–17111. DOI: 10.1016/j.ijhydene.2014.07.182.
  • Guo, Y. H.; Jiang, K.; Xu, B.; Xia, Y. D.; Yin, J.; Liu, Z. G. Remarkable Hydrogen Storage Capacity in Li-Decorated Graphyne: Theoretical Predication. J. Phys. Chem. C. 2012, 116, 13837–13841. DOI: 10.1021/jp302062c.
  • Li, C.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B.; Wang, L.-W. High Capacity Hydrogen Storage in Ca Decorated Graphyne: A First-Principle Study. J. Phys. Chem. C. 2011, 115, 23221–23225. DOI: 10.1021/jp208423y.
  • Bhuvaneswari, R.; Nagarajan, V.; Chandiramouli, R. Interaction Properties of Explosive Vapors on γ-Grapyne Nanosheet – A DFT Outlook. Fullerenes Nanotub. Carbon Nanostruct. 2019, 27, 770–778.
  • Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. Uptake of H2 and CO2 by Graphene. J. Phys. Chem. C. 2008, 112, 15704–15707. DOI: 10.1021/jp805802w.
  • Cho, J. H.; Yang, S. J.; Lee, K.; Park, C. R. Si-Doping Effect on the Enhanced Hydrogen Storage of Single Walled Carbon Nanotubes and Graphene. Int. J. Hydrogen Energy 2011, 36, 12286–12295. DOI: 10.1016/j.ijhydene.2011.06.110.
  • Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene Nanostructures as Tunable Storage Media for Molecular Hydrogen. Proc. Natl. Acad. Sci. USA. 2005, 102, 10439–10444. USA DOI: 10.1073/pnas.0501030102.
  • Yoon, M.; Yang, S. Y.; Wang, E.; Zhang, Z. Charged Fullerenes as High-Capacity Hydrogen Storage Media. Nano Lett. 2007, 7, 2578–2583. DOI: 10.1021/nl070809a.
  • Mortazavi, B.; Shahrokhi, M.; Madjet, M. E.; Hussain, T.; Zhuang, X. Y.; Rabczuk, T. N. B-, P-, Al-, as-, and Ga-Graphdiyne/Graphyne Lattices: first-Principles Investigation of Mechanical, Optical and Electronic Properties. J. Mater. Chem. C. 2019, 7, 3025–3036. DOI: 10.1039/C9TC00082H.
  • Ruiz-Puigdollers, A.; Gamallo, P. DFT Study of the Role of N- and B-Doping on Structural, Elastic and Electronic Properties of α-, β- and γ-Graphyne. Carbon 2017, 114, 301–310. DOI: 10.1016/j.carbon.2016.12.026.
  • Zhou, Y. N.; Chu, W.; Jing, F. L.; Zheng, J.; Sun, W. J.; Xue, Y. Enhanced Hydrogen Storage on Li-Doped Defective Graphene with B Substitution: A DFT Study. Appl. Surf. Sci. 2017, 410, 166–176. DOI: 10.1016/j.apsusc.2017.03.057.
  • Lu, R. F.; Rao, D. W.; Meng, Z. S.; Zhang, X. B.; Xu, G. J.; Liu, Y. Z.; Kan, E. J.; Xiao, C. Y.; Deng, K. M. Boron-Substituted Graphyne as a Versatile Material with High Storage Capacities of Li and H2: A Multiscale Theoretical Study. Phys. Chem. Chem. Phys. 2013, 15, 16120–16126. DOI: 10.1039/c3cp52364k.
  • Delley, B. From Molecules to Solids with DMol3 Approach. J. Chem. Phys 2000, 113, 7756–7763. DOI: 10.1063/1.1316015.
  • Delley, B. Hardness Conserving Semilocal Pseudopotential. Phys. Rev. B. 2002, 66, 155121–155125. 9. DOI: 10.1103/PhysRevB.66.155125.
  • Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B. 1981, 23, 5048–5079. DOI: 10.1103/PhysRevB.23.5048.
  • Zhang, H. Y.; Zhao, M. W.; He, X. J.; Wang, Z. H.; Zhang, X. J.; Liu, X. D. High Mobility and High Storage Capacity of Lithium in sp-sp2 Hybridized Carbon Network: The Case of Graphyne. J. Phys. Chem. C. 2011, 115, 8845–8850. DOI: 10.1021/jp201062m.
  • Zhou, J.; Kun, L.; Wang, Q.; Chen, X. S.; Sun, Q.; Jena, P. Electronic Structure and Bonding of Graphyne Sheet and Its BN Analog. J. Chem. Phys. 2011, 134, 174701–174705. DOI: 10.1063/1.3583476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.