360
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of N-doped graphene quantum dots from bulk N-doped carbon nanofiber film for fluorescence detection of Fe3+ and ascorbic acid

, , &
Pages 218-226 | Received 27 Sep 2020, Accepted 29 Sep 2020, Published online: 12 Oct 2020

References

  • Ebrahimi, M.; Samadi, M.; Yousefzadeh, S.; Soltani, M.; Rahimi, A.; Chou, T. C.; Chen, L. C.; Chen, K. H.; Moshfegh, A. Z. Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct Z-Scheme Mechanism. ACS Sustainable Chem. Eng. 2017, 5, 367–375. DOI: 10.1021/acssuschemeng.6b01738.
  • Liu, H.; Na, W. D.; Liu, Z. P.; Chen, X. Q.; Su, X. G. A Novel Turn-On Fluorescent Strategy for Sensing Ascorbic Acid Using Graphene Quantum Dots as Fluorescent Probe. Biosens. Bioelectron. 2017, 92, 229–233. DOI: 10.1016/j.bios.2017.02.005.
  • Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. Weinheim. 2010, 22, 734–738. DOI: 10.1002/adma.200902825.
  • Kumar, Y. R.; Deshmukh, K.; Sadasivuni, K. K.; Pasha, S. K. K. Graphene Quantum Dot Based Materials for Sensing, Bio-Imaging and Energy Storage Applications: A Review. RSC Adv. 2020, 10, 23861–23898. DOI: 10.1039/D0RA03938A.
  • Lu, H.; Li, W.; Dong, H.; Wei, M. Graphene Quantum Dots for Optical Bioimaging. Small 2019, 15, 1902136. DOI: 10.1002/smll.201902136.
  • Zhang, X.; Wei, C.; Li, Y.; Yu, D. Shining Luminescent Graphene Quantum Dots: Synthesis, Physicochemical Properties, and Biomedical Applications. Trac-Trend. Anal. Chem. 2019, 116, 109–121. DOI: 10.1016/j.trac.2019.03.011.
  • Liu, W.; Li, M.; Jiang, G.; Li, G.; Zhu, J.; Xiao, M.; Zhu, Y.; Gao, R.; Yu, A.; Feng, M.; Chen, Z. Graphene Quantum Dots-Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Adv. Energy Mater. 2020, 10, 2001275. DOI: 10.1002/aenm.202001275.
  • Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31, 1808283. DOI: 10.1002/adma.201808283.
  • Yan, X.; Cui, X.; Li, L. S. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 2010, 132, 5944–5945. DOI: 10.1021/ja1009376.
  • Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale 2013, 5, 4015–4039. DOI: 10.1039/c3nr33849e.
  • Bak, S.; Kim, D.; Lee, H. Graphene Quantum Dots and Their Possible Energy Applications: A Review. Curr. Appl. Phys. 2016, 16, 1192–1201. DOI: 10.1016/j.cap.2016.03.026.
  • Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844–849. DOI: 10.1021/nl2038979.
  • Kang, S. H.; Mhin, S.; Han, H.; Kim, K. M.; Jones, J. L.; Ryu, J. H.; Kang, J. S.; Kim, S. H.; Shim, K. B. Ultrafast Method for Selective Design of Graphene Quantum Dots with Highly Efficient Blue Emission. Sci. Rep. 2016, 6, 38423 DOI: 10.1038/srep38423.
  • Russo, P.; Hu, A.; Compagnini, G.; Duley, W. W.; Zhou, N. Y. Femtosecond Laser Ablation of Highly Oriented Pyrolytic Graphite: A Green Route for Large-Scale Production of Porous Graphene and Graphene Quantum dots. Nanoscale 2014, 6, 2381–2389. DOI: 10.1039/c3nr05572h.
  • Shin, Y.; Park, J.; Hyun, D.; Yang, J.; Lee, J.-H.; Kim, J. H.; Lee, H. Acid-Free and Oxone Oxidant-Assisted Solvothermal Synthesis of Graphene Quantum Dots Using Various Natural Carbon Materials as Resources. Nanoscale 2015, 7, 5633–5637. DOI: 10.1039/c5nr00814j.
  • Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C. M. One-Step and High Yield Simultaneous Preparation of Single-and Multi-Layer Graphene Quantum Dots from CX-72 Carbon Back. J. Mater. Chem. 2012, 22, 8764–8766. DOI: 10.1039/c2jm30658a.
  • Nilewski, L.; Mendoza, K.; Jalilov, A. S.; Berka, V.; Wu, G.; Sikkema, W. K. A.; Metzger, A.; Ye, R.; Zhang, R.; Luong, D. X.; et al. Highly Oxidized Graphene Quantum Dots from Coal as Efficient Antioxidants. ACS Appl Mater Interfaces 2019, 11, 16815–16821. DOI: 10.1021/acsami.9b01082.
  • Sun, H.; Ji, H.; Ju, E.; Guan, Y.; Ren, J.; Qu, X. Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-Down Strategy for Long-Time Cellular Imaging. Chemistry 2015, 21, 3791–3797. DOI: 10.1002/chem.201406345.
  • Ananthanarayanan, A.; Wang, Y.; Routh, P.; Sk, M. A.; Than, A.; Lin, M.; Zhang, J.; Chen, J.; Sun, H.; Chen, P. Nitrogen and Phosphorus Co-Doped Graphene Quantum Dots: Synthesis from Adenosine Triphosphate, Optical Properties, and Cellular Imaging. Nanoscale 2015, 7, 8159–8165. DOI: 10.1039/c5nr01519g.
  • Zhang, L.; Zhang, Z. Y.; Liang, R. P.; Li, Y. H.; Qiu, J. D. Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal" Aggregation-Induced Photoluminescence Enhancement. Anal. Chem. 2014, 86, 4423–4430. DOI: 10.1021/ac500289c.
  • Brainina, K. Z.; Bukharinova, M. A.; Stozhko, N. Y.; Sokolkov, S. V.; Tarasov, A. V.; Vidrevich, M. B. Electrochemical Sensor Based on a Carbon Veil Modified by Phytosynthesized Gold Nanoparticles for Determination of Ascorbic Acid. Sensors 2020, 20, 1800. DOI: 10.3390/s20061800.
  • Das, T. R.; Sharma, P. K. Hydrothermal-Assisted Green Synthesis of Ni/Ag@rGO Nanocomposite Using Punica Granatum Guice and Electrochemical Detection of Ascorbic Acid. Microchem. J 2020, 156, 104850. DOI: 10.1016/j.microc.2020.104850.
  • Arumugam, N.; Kim, J. Quantum Dots Attached to Graphene Oxide for Sensitive Detection of Ascorbic Acid in Aqueous Solutions. Mater Sci Eng C Mater Biol Appl 2018, 92, 720–725. DOI: 10.1016/j.msec.2018.07.017.
  • Abellan-Llobregat, A.; Vidal, L.; Rodriguez-Amaro, R.; Canals, A.; Morallon, E. Evaluation of Herringbone Carbon Nanotubes-Modified Electrodes for the Simultaneous Determination of Ascorbic Acid and Uric Acid. Electrochim. Acta 2018, 285, 284–291. DOI: 10.1016/j.electacta.2018.08.007.
  • Niu, Q.; Zheng, J.; Liu, L. B.; Xu, J. L.; Alsulami, H.; Kutbi, M. A.; Zhang, M. Nanostructured MnO(2) Nanosheets Grown on Nickel Foam: An Efficient and Readily Recyclable 3D Artificial Oxidase for the Colorimetric Detection of Ascorbic Acid. New J. Chem. 2020, 44, 11959–11964. DOI: 10.1039/D0NJ01909G.
  • Versari, A.; Mattioli, A.; Paola Parpinello, G.; Galassi, S. Rapid Analysis of Ascorbic and Isoascorbic Acids in Fruit Juice by Capillary Electrophoresis. Food Control 2004, 15, 355–358. DOI: 10.1016/S0956-7135(03)00097-5.
  • Ma, L.; Shi, H. M.; Lian, K. Q.; Diao, Y. F.; Chen, Y.; Ma, C. L.; Kang, W. Highly Selective and Sensitive Determination of Several Antioxidants in Human Breast Milk Using High-Performance Liquid Chromatography Based on Ag(III) Complex Chemiluminescence Detection. J. Food Chem 2017, 218, 422–426. DOI: 10.1016/j.foodchem.2016.09.025.
  • Huang, S.; Zhu, F.; Xiao, Q.; Su, W.; Sheng, J.; Huang, C.; Hu, B. A CdTe/CdS/ZnS Core/Shell/Shell QDs-Based "off-on" Fluorescent Biosensor for Sensitive and Specific Determination of L-Ascorbic Acid. RSC Adv 2014, 4, 46751–46761. DOI: 10.1039/C4RA08169B.
  • Yan, X.; He, L.; Zhou, C.; Qian, Z. J.; Hong, P.; Sun, S.; Li, C. Fluorescent Detection of Ascorbic Acid Using Glutathione Stabilized Au Nanoclusters. Chem. Phys 2019, 522, 211–213. DOI: 10.1016/j.chemphys.2019.03.008.
  • Huang, S.; Qiu, H.; Zhu, F.; Lu, S.; Xiao, Q. Graphene Quantum Dots as on-off-on Fluorescent Probes for Chromium(VI) and Ascorbic Acid. Microchim. Acta 2015, 182, 1723–1731. DOI: 10.1007/s00604-015-1508-6.
  • Ahmed, M.; Faisal, M.; Ihsan, A.; Naseer, M. M. Fluorescent Organic Nanoparticles (FONs) as Convenient Probes for Metal Ion Detection in Aqueous Medium. Analyst 2019, 144, 2480–2497. DOI: 10.1039/c8an01801d.
  • Wu, P.; Zhao, T.; Wang, S.; Hou, X. Semicondutor Quantum Dots-Based Metal Ion probes. Nanoscale 2014, 6, 43–64. DOI: 10.1039/c3nr04628a.
  • Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H. Preparation of Highly Photoluminescent Sulfur-Doped Carbon Dots for Fe(III) Detection. J. Mater. Chem. A. 2015, 3, 542–546. DOI: 10.1039/C4TA05483K.
  • Yin, H.; Truskewycz, A.; Cole, I. S. Quantum Dot (QD)-Based Probes for Multiplexed Determination of Heavy Metal Ions. Mikrochim. Acta. 2020, 187, 336 DOI: 10.1007/s00604-020-04297-5.
  • Xu, H. B.; Zhou, S. H.; Liu, J. Y.; Wei, Y. J. Nanospace-Confined Preparation of Uniform Nitrogen-Doped Graphene Quantum Dots for Highly Selective Fluorescence Dual-Function Determination of Fe3. + And Ascorbic Acid. RSC Adv. 2018, 8, 5500–5508. DOI: 10.1039/C7RA13001E.
  • Luo, P.; Ji, Z.; Li, C.; Shi, G. Aryl-Modified Graphene Quantum Dots with Enhanced Photoluminescence and Improved pH tolerance. Nanoscale 2013, 5, 7361–7367. DOI: 10.1039/c3nr02156d.
  • Yang, Y.; Xiao, X.; Xing, X.; Wang, Z.; Zou, T.; Wang, Z.; Zhao, R.; Wang, Y. One-Pot Synthesis of N-Doped Graphene Quantum Dots as Highly Sensitive Fluorescent Sensor for Detection of Mercury Ions Water Solutions. Mater. Res. Express 2019, 6, 095615. DOI: 10.1088/2053-1591/ab3006.
  • Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. J. Am. Chem. Soc. 2012, 134, 15–18. DOI: 10.1021/ja206030c.
  • Zhang, R.; Chen, W. Nitrogen-Doped Carbon Quantum Dots: Facile Synthesis and Application as a "turn-off" fluorescent probe for detection of Hg2+ ions . Biosens. Bioelectron. 2014, 55, 83–90. DOI: 10.1016/j.bios.2013.11.074.
  • Wang, Q.; Ma, X.; Lv, H.; Wei, A.; Wu, T.; Ding, L.; Ma, X.; Ma, C. MnO2 Nanoparticle Mediated Colorimetric Turn-off Determination of Ascorbic Acid. New J. Chem. 2020, 44, 381–386. DOI: 10.1039/C9NJ05751J.
  • Wang, G. Q.; Chen, Z.; Chen, L. Mesoporous Silica-Coated Gold Nanorods: Towards Sensitive Colorimetric Sensing of Ascorbic Acid via Target-Induced Silver Overcoating. Nanoscale 2011, 3, 1756–1759. DOI: 10.1039/c0nr00863j.
  • Atta, N. F.; Galal, A.; El-Gohary, A. R. Crown Ether Modified Poly(Hydroquinone)/Carbon Nanotubes Based Electrochemical Sensor for Simultaneous Determination of Levodopa, Uric Acid, Tyrosine and Ascorbic Acid in Biological Fluids. J. Electroanal. Chem. 2020, 863, 114032. DOI: 10.1016/j.jelechem.2020.114032.
  • Sun, C. L.; Lee, H. H.; Yang, J. M.; Wu, C. C. The Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid Using Graphene/Size-Selected Pt Nanocomposites. Biosens. Bioelectron. 2011, 26, 3450–3455. DOI: 10.1016/j.bios.2011.01.023.
  • Wang, X.; Wu, P.; Hou, X.; Lv, Y. An Ascorbic Acid Sensor Based on Protein-Modified Au Nanoclusters. Analyst 2013, 138, 229–233. DOI: 10.1039/c2an36112d.
  • Zhao, P.; He, K.; Han, Y.; Zhang, Z.; Yu, M.; Wang, H.; Huang, Y.; Nie, Z.; Yao, S. Near Infrared Dual-Emission Quantum Dots-Gold Nanoclusters Nanohybrid via Co-Template Synthesis for Ratiometric Fluorescent Detection and Bioimaging of Ascorbic Acid in Vitro and in Vivo. Anal. Chem. 2015, 87, 9998–10005. DOI: 10.1021/acs.analchem.5b02614.
  • Shamsipur, M.; Molaei, K.; Molaabasi, F.; Alipour, M.; Alizadeh, N.; Hosseinkhani, S.; Hosseini, M. Facile Preparation and Characterization of New Green Emitting Carbon Dots for Sensitive and Selective off/on Detection of Fe3+ Ion and Ascorbic Acid in Water and Urine Samples and intracellular imaging in living cells. Talanta 2018, 183, 122–130. DOI: 10.1016/j.talanta.2018.02.042.
  • Liu, J. J.; Chen, Z. T.; Tang, D. S.; Wang, Y. B.; Kang, L. T.; Yao, J. N. Graphene Quantum Dots-Based Fluorescent Probe for Turn-On Sensing of Ascorbic Acid. Sens. Actuators B-Chem 2015, 212, 214–219. DOI: 10.1016/j.snb.2015.02.019.
  • Yang, Y. X.; Fang, Y. Z.; Tian, J. X.; Xiao, Q.; Kong, X. J. Fluorescent Polydopamine Nanoparticles as a Nanosensor for the Sequential Detection of Mercury Ions and L-Ascorbic Acid Based on a Coordination Effect and Redox Reaction. RSC Adv. 2020, 10, 28164–28170. DOI: 10.1039/D0RA02031A.
  • Raveendran, V.; Babu, A. R. S.; Renuka, N. K. Mint Leaf Derived Carbon Dots for Dual Analyte Detection of Fe(III) and Ascorbic Acid. RSC Adv. 2019, 9, 12070–12077. DOI: 10.1039/C9RA02120E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.