374
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Evolution of hydration process of cement-based material containing high volume of dolomite powder

, , , , & ORCID Icon
Pages 343-351 | Received 20 Oct 2020, Accepted 23 Oct 2020, Published online: 06 Nov 2020

References

  • Scrivener, K. L.; Vanderley, M. J.; Gartner, E. M. Eco-Efficient Cements: Potential Economically Viable Solutions for a low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. DOI: 10.1016/j.cemconres.2018.03.015.
  • Xu, J. T.; Chen, J. W.; Lu, D. Y.; Xu, Z. Z.; Hooton, R. D. Effect of Dolomite Powder on the Hydration and Properties of Calcium Sulfoaluminate Cements with Different Gypsum Contents. Constr. Build. Mater. 2019, 225, 302–310. DOI: 10.1016/j.conbuildmat.2019.07.050.
  • Barbhuiy, S. Effects of Fly Ash and Dolomite Powder on the Properties of Self-Compacting Concrete. Constr. Build. Mater 2011, 25, 3301–3305.
  • Mikhailova, O.; Yakovlev, G.; Maeva, I.; Senkov, S. Effect of Dolomite Limestone Powder on the Compressive Strength of Concrete. Procedia. Eng. 2013, 57, 775–780. DOI: 10.1016/j.proeng.2013.04.098.
  • Stukovnik, P.; Bosiljkov, V. B.; Marinsek, M. Detailed Investigation of ACR in Concrete with Silica-Free Dolomite Aggregate. Constr. Build. Mater. 2019, 216, 325–336.
  • Garcia, E.; Alfonso, P.; Labrador, M.; Gali, S. Dedolomitization in Different Alkaline Media: Application to Portland Cement Paste. Cem. Concr. Res. 2003, 33, 1443–1448.
  • Katayama, T. The so-Called Alkali-Carbonate Reaction (ACR)-Its Mineralogical and Geochemical Details, with Special Reference to ASR. Cem. Concr. Res. 2010, 40, 643–675. DOI: 10.1016/j.cemconres.2009.09.020.
  • Katayama, T. How to Identify Carbonate Rock Reactions in Concrete. Mater. Charact 2004, 53, 85–104. DOI: 10.1016/j.matchar.2004.07.002.
  • Grattan-Bellew, P. E.; Mitchell, L. D.; Margeson, J.; Min, D. Is Alkali-Carbonate Reaction Just a Variant of Alkali-Silica Reaction ACR = ASR? Cem. Concr. Res. 2010, 40, 556–562. DOI: 10.1016/j.cemconres.2009.09.002.
  • Ergün, A. Effects of the Usage of Diatomite and Waste Marble Powder as Partial Replacement of Cement on the Mechanical Properties of Concrete. Constr. Build. Mater 2011, 25, 806–812. DOI: 10.1016/j.conbuildmat.2010.07.002.
  • Yang, W. H.; Ryu, D. W.; Park, D. C.; Kim, W. J.; Seo, C. H. A Study of the Effect of Light-Burnt Dolomite on the Hydration of Alkali-Activated Portland Blast-Furnace Slag Cement. Constr. Build. Mater. 2014, 57, 24–29. DOI: 10.1016/j.conbuildmat.2014.01.071.
  • Rakhimov, R. Z.; Shelikhov, N. S. Rational Utilization of Carbonate Raw Materials for the Production Building Materials. J. Build. Mater. 2006, 9, 42–44.
  • Zajac, M.; Bolte, G.; Dienemann, W. Comparative Experimental and Virtual Investigations of the Influence of Calcium and Magnesium Carbonates on Reacting Cement. Proceedings of the 13th International Congress on the Chemistry of Cement, 2011, 1–7.
  • Machner, A.; Zajac, M.; Haha, M. B.; Kjellsen, K. O.; Geiker, M. R.; Weerdt, K. D. Limitations of the Hydrotalcite Formation in Portland Composite Cement Pastes Containing Dolomite and Metakaolin. Cem. Concr. Res. 2018, 105, 1–17. DOI: 10.1016/j.cemconres.2017.11.007.
  • Krishnan, S.; Bishnoi, S. Understanding the Hydration of Dolomite in Cementitious Systems with Reactive Aluminosilicates Such as Calcined Clay. Cem. Concr. Res. 2018, 108, 116–128. DOI: 10.1016/j.cemconres.2018.03.010.
  • Pokrovsky, O. S.; Golubev, S. V.; Schott, J.; Castillo, A. Calcite, Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 °C and 1 to 55 Atm pCO2: new Constraints on CO2 Sequestration in Sedimentary Basins. Chem. Geol. 2009, 265, 20–32. DOI: 10.1016/j.chemgeo.2009.01.013.
  • Stukovnik, P.; Princic, T.; Pejovnik, R. S.; Bosiljkov, V. B. Alkali-Carbonate Reaction in Concrete and Its Implications for a High Rate of Long-Term Compressive Strength Increase. Constr. Build. Mater. 2014, 50, 699–709.
  • Princic, T.; Stukovnik, P.; Pejovnik, S.; Schutter, G. D.; Bosiljkov, V. B. Observations on Dedolomitization of Carbonate Concrete Aggregates, Implications for ACR and Expansion. Cem. Concr. Res. 2013, 54, 151–160.
  • Zajac, M.; Bremseth, S. K.; Whitehead, M.; Haha, M. B. Effect of CaMg(CO3)2 on Hydrate Assemblages and Mechanical Properties of Hydrated Cement Pastes at 40 °C and 60 °C. Cem. Concr. Res. 2014, 65, 21–29. DOI: 10.1016/j.cemconres.2014.07.002.
  • Chou, L.; Garrels, R. M.; Wollast, R. Comparative Study of the Kinetics and Mechanisms of Dissolution of Carbonate Minerals. Chem. Geol 1989, 78, 269–282. [Database] DOI: 10.1016/0009-2541(89)90063-6.
  • Gali, S.; Ayora, C.; Alfonso, P.; Tauler, E.; Labrador, M. Kinetics of Dolomite-Portlandite Reaction: Application to Portland Cement Concrete. Cem. Concr. Res. 2001, 31, 933–939.
  • Chinese Standards GB/T 17671-1999, Method of Testing Cements Determination of Strength, Beijing, Chinese Standard, 1999.
  • Mostafa, N. Y.; Brown, P. W. Heat of Hydration of High Reactive Pozzolans in Blended Cements: Isothermal Conduction Calorimetry. Thermochim. Acta 2005, 435, 162–167. DOI: 10.1016/j.tca.2005.05.014.
  • Poppe, A. M.; Schutter, G. D. Cement Hydration in the Presence of High Filler Contents. Cem. Concr. Res. 2005, 35, 2290–2299. DOI: 10.1016/j.cemconres.2005.03.008.
  • Rahhal, V.; Talero, R. Early Hydration of Portland Cement with Crystalline Mineral Additions. Cem. Concr. Res. 2005, 35, 1285–1291. DOI: 10.1016/j.cemconres.2004.12.001.
  • Berodier, E.; Scrivener, K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H. J. Am. Ceram. Soc. 2014, 97, 3764–3773. DOI: 10.1111/jace.13177.
  • Lothenbach, B.; Durdzinski, P.; Weerdt, K. D. Thermogravimetric analysis. In: K.L. Scrivener, R. Snellings, B. Lothenbach (Eds.), A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press Taylor &Francis Group, Boca Raton, 2015, 177–211
  • Saba, N.; Alothman, O. Y.; Almutairi, Z.; Jawaid, M. Magnesium Hydroxide Reinforced Kenaf Fibers/Epoxy Hybrid Composites: Mechanical and Thermomechanical Properties. Constr. Build. Mater 2019, 201, 138–148. DOI: 10.1016/j.conbuildmat.2018.12.182.
  • Weerdt, K. D.; Sellevold, E.; Kjellsen, K. O.; Justnes, H. Fly Ash-Limestone Ternary Cements: effect of Component Fineness. Adv. Cem. Res. 2011, 23, 203–214. DOI: 10.1680/adcr.2011.23.4.203.
  • Tajra, F.; Elrahman, M. A.; Lehmann, C.; Stephan, D. Properties of Lightweight Concrete Made with Core-Shell Structured Lightweight Aggregate. Constr. Build. Mater. 2019, 205, 39–51. DOI: 10.1016/j.conbuildmat.2019.01.194.
  • Garcia, E.; Alfonso, P.; Tauler, E.; Gali, S. Surface Alteration of Dolomite Indedolomitization Reaction in Alkaline Media. Cem. Concr. Res. 2003, 33, 1449–1456.
  • Deng, M.; Tang, M. S. Mechanism of Dedolomitization and Expansion of Dolomitic Rocks. Cem. Concr. Res. 1993, 23, 1397–1408.
  • Tong, L.; Tang, M. S. Expansion Mechanism of Alkali-Dolomite and Alkali-Magnesite Reaction. Cem. Concr. Res. 1999, 21, 361–373. DOI: 10.1016/S0958-9465(99)00022-0.
  • Zhang, X. Y.; Glasser, F. P.; Scrivener, K. L. Reaction Kinetics of Dolomite and Portlandite. Cem. Concr. Res. 2014, 66, 11–18. DOI: 10.1016/j.cemconres.2014.07.017.
  • Du, H.; Pang, S. D. Enhancement of Barrier Properties of Cement Mortar with Graphene Nanoplatelet. Cem. Concr. Res. 2015, 76, 10–19. DOI: 10.1016/j.cemconres.2015.05.007.
  • Kuo, W.; Huang, J.; Lin, C. Effects of Organo-Modified Montmorillonite on Strengths and Permeability of Cement Mortars. Cem. Concr. Res 2006, 36, 886–895. DOI: 10.1016/j.cemconres.2005.11.013.
  • Zuo, J. Q.; Yao, W.; Wu, K. R. Seebeck Effect and Mechanical Properties of Carbon Nanotube-Carbon Fiber/Cement Nanocomposites. Fuller. Nanotub. Car. N. 2015, 23, 383–391. DOI: 10.1080/1536383X.2013.863760.
  • Li, W. G.; Huang, Z. Y.; Cao, F. L.; Sun, Z. H.; Shah, S. P. Effects of Nano-Silica and Nano-Limestone on Flowability and Mechanical Properties of Ultra-High-Performance Concrete Matrix. Constr. Build. Mater 2015, 95, 366–374. DOI: 10.1016/j.conbuildmat.2015.05.137.
  • Malikov, E. Y. The Effect of Polyvinyl Alcohol Functionalized Multiwall Carbon Nanotubes on the Improvement of the Compressive Strength of Concrete. Fuller. Nanotub. Car. N. 2020, 28, 781–785. DOI: 10.1080/1536383X.2020.1759557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.