337
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of multi-walled carbon nanotubes decorated with hydroxyapatite

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 423-430 | Received 18 Nov 2020, Accepted 19 Nov 2020, Published online: 07 Dec 2020

References

  • Iijima, S. Synthesis of Carbon Nanotubes. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • David, M. E.; Ion, R.-M.; Grigorescu, R. M.; Iancu, L.; Andrei, E. R. Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An up-to-Date Overview. Materials 2020, 13, 2064. DOI: 10.3390/ma13092064.
  • Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. Methods for Carbon Nanotubes Synthesis. J. Mater. Chem. 2011, 21, 15872–15884. DOI: 10.1039/c1jm12254a.
  • Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9, 393. DOI: 10.1186/1556-276X-9-393.
  • Arora, N.; Sharma, N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150. DOI: 10.1016/j.diamond.2014.10.001.
  • Ando, Y.; Zhao, X. Synthesis of Carbon Nanotubes by Arc-Discharge Method. New Diam. Front C Tec. 2006, 1, 16.
  • Ferreira, F. V.; Franceschi, W.; Menezes, B. R. C.; Biagioni, A. F.; Coutinho, A. R.; Cividanes, L. S. Chapter One – Synthesis, Characterization, and Applications of Carbon Nanotubes. In Carbon-Based Nanofillers and Their Rubber Nanocomposites, Yaragalla, S., Mishra, R., Thomas, S., Kalarikkal, N., Maria, H. J., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp 1–45.
  • Arepalli, S. Laser Ablation Process for Single-Walled Carbon Nanotube Production. J. Nanosci. Nanotechnol. 2004, 4, 317–325. DOI: 10.1166/jnn.2004.072.
  • Chrzanowska, J.; Hoffman, J.; Małolepszy, A.; Mazurkiewicz, M.; Kowalewski, T. A.; Szymanski, Z.; Stobinski, L. Synthesis of Carbon Nanotubes by the Laser Ablation Method: Effect of Laser Wavelength. Phys. Status Solidi B. 2015, 252, 1860–1867. DOI: 10.1002/pssb.201451614.
  • Yahya, N. Carbon and Oxide Nanostructures. Springer: Verlag Berlin Heidelberg, 2013.
  • Wang, X.-D.; Vinodgopal, K.; Dai, G.-P. Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. In Perspective of Carbon Nanotubes, Hosam Saleh, Ed.; IntechOpen: London, UK, 2019.
  • Venkatesan, S.; Visvalingam, B.; Mannathusamy, G.; Viswanathan, V.; Rao, A. G. Effect of Chemical Vapor Deposition Parameters on the Diameter of Multi-Walled Carbon Nanotubes. Int. Nano Lett. 2018, 8, 297–308. DOI: 10.1007/s40089-018-0252-4.
  • Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. DOI: 10.1166/jnn.2010.2939.
  • Seidel, R.; Duesberg, G. S.; Unger, E.; Graham, A. P.; Liebau, M.; Kreupl, F. Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 C and a Simple Growth Model. J. Phys. Chem. B. 2004, 108, 1888–1893. DOI: 10.1021/jp037063z.
  • Lee, D.; Seo, J. Preparation of Carbon Nanotubes from Graphite Powder at Room Temperature. arXiv preprint arXiv:1007.1062, 2010.
  • Xin, F.; Li, L. Decoration of Carbon Nanotubes with Silver Nanoparticles for Advanced CNT/Polymer Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 961–967. DOI: 10.1016/j.compositesa.2011.03.024.
  • Duc Chinh, V.; Speranza, G.; Migliaresi, C.; Van Chuc, N.; Minh Tan, V.; Phuong, N.-T. Synthesis of Gold Nanoparticles Decorated with Multiwalled Carbon Nanotubes (Au-MWCNTs) via Cysteaminium Chloride Functionalization. Sci. Rep. 2019, 9, 5667. DOI: 10.1038/s41598-019-42055-7.
  • Eman, A. M.; Dawya, M.; Abouelsayedb, A.; Elsabbaghc, I.; Elfassc, M. Synthesis and Characterization of Multi-Walled Carbon Nanotubes Decorated ZnO Nanocomposite. Egypt. J. Chem. 2016, 59, 1061–1068.
  • Gao, B.; Chen, G. Z.; Puma, G. L. Carbon Nanotubes/Titanium Dioxide (CNTs/TiO2) Nanocomposites Prepared by Conventional and Novel Surfactant Wrapping Sol–Gel Methods Exhibiting Enhanced Photocatalytic Activity. Appl. Catal. B. Environ. 2009, 89, 503–509. DOI: 10.1016/j.apcatb.2009.01.009.
  • Montakhab, N.; Hassani, S. S.; Rashidi, A.; Aboutalebi, M. R.; Arabi, H. Synthesis and Characterization of SiO2-Carbon Nanotube Hybrides Using a Sol-Gel Method. J. Ultrafine Grained Nanostruct. Mater. 2012, 45, 29–34.
  • Dung, N. D.; Van Chuc, N.; Tam, N. T. T.; Quang, N. H.; Khoi, P. H.; Minh, P. N. Carbon-Nanotube Growth over Iron Nanoparticles Formed on CaCO∼ 3 Support by Using Hydrogen Reduction. J. Korean Phy. Soc. 2008, 52, 1372–1377. DOI: 10.3938/jkps.52.1372.
  • Ma, P. C.; Tang, B. Z.; Kim, J.-K. Effect of CNT Decoration with Silver Nanoparticles on Electrical Conductivity of CNT-Polymer Composites. Carbon 2008, 46, 1497–1505. DOI: 10.1016/j.carbon.2008.06.048.
  • Wang, X.; Yao, S.; Li, X. and Li X. Sol‐Gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property. Chin. J. Chem. 2009, 27, 1317–1320. DOI: 10.1002/cjoc.200990220.
  • Kharisov, B. I.; Kharissova, O. V.; Ortiz Mendez, U.; De La Fuente, I. G. Decoration of Carbon Nanotubes with Metal Nanoparticles: Recent Trends. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2016, 46, 55–76. DOI: 10.1080/15533174.2014.900635.
  • Awadallah-F, A.; Al-Muhtaseb, S. Carbon Nanoparticles-Decorated Carbon Nanotubes. Sci. Rep. 2020, 10, 1–7.
  • Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Carbon Nanotubes Decorated with Pt Nanoparticles via Electrostatic Self-Assembly: A Highly Active Oxygen Reduction Electrocatalyst. J. Mater. Chem. 2010, 20, 2826–2830. DOI: 10.1039/b919494k.
  • Hoyos-Palacio, L. M.; Cuesta Castro, D. P.; Ortiz-Trujillo, I. C.; Botero Palacio, L. E.; Galeano Upegui, B. J.; Escobar Mora, N. J.; Carlos Cornelio, J. A. Compounds of Carbon Nanotubes Decorated with Silver Nanoparticles via in-Situ by Chemical Vapor Deposition (CVD). J. Mater. Res. Technol. 2019, 8, 5893–5898. DOI: 10.1016/j.jmrt.2019.09.062.
  • Dinh, N. X.; Quy, N. V.; Huy, T. Q.; Le, A.-T. Decoration of Silver Nanoparticles on Multiwalled Carbon Nanotubes: Antibacterial Mechanism and Ultrastructural Analysis. J. Nanomater. 2015, 2015, 1–11. DOI: 10.1155/2015/814379.
  • Haider, A. J.; Mohammed, M.; Al-Mulla, E. A. J.; Ahmed, D. S. Synthesis of Silver Nanoparticle Decorated Carbon Nanotubes and Its Antimicrobial Activity against Growth of Bacteria. Rend. Fis. Acc. Lincei 2014, 25, 403–407. DOI: 10.1007/s12210-014-0300-6.
  • Lawton, K.; Le, H.; Tredwin, C.; Handy, R. D. Carbon Nanotube Reinforced Hydroxyapatite Nanocomposites as Bone Implants: Nanostructure, Mechanical Strength and Biocompatibility. Int. J. Nanomedicine 2019, 14, 7947–7962. DOI: 10.2147/IJN.S218248.
  • Mukherjee, S.; Kundu, B.; Sen, S.; Chanda, A. Improved Properties of Hydroxyapatite–Carbon Nanotube Biocomposite: Mechanical, in Vitro Bioactivity and Biological Studies. Ceram. Int. 2014, 40, 5635–5643. DOI: 10.1016/j.ceramint.2013.10.158.
  • White, A. A.; Best, S. M.; Kinloch, I. A. Hydroxyapatite–Carbon Nanotube Composites for Biomedical Applications: A Review. Int. J. Appl. Ceram. Technol. 2007, 4, 1–13. DOI: 10.1111/j.1744-7402.2007.02113.x.
  • Constanda, S.; Stan, M. S.; Ciobanu, C. S.; Motelica-Heino, M.; Guégan, R.; Lafdi, K.; Dinischiotu, A.; Predoi, D. Carbon Nanotubes-Hydroxyapatite Nanocomposites for an Improved Osteoblast Cell Response. J. Nanomater 2016, 2016, 1–10. DOI: 10.1155/2016/3941501.
  • Barabás, R.; de Souza Ávila, E.; Ladeira, L. O.; Antônio, L. M.; Tötös, R.; Simedru, D.; Bizo, L.; Cadar, O. Graphene Oxides/Carbon Nanotubes–Hydroxyapatite Nanocomposites for Biomedical Applications. Arab. J. Sci. Eng. 2020, 45, 219–227. DOI: 10.1007/s13369-019-04058-4.
  • Gholami, F.; Noor, A.-F. M. 2016 Hydroxyapatite Reinforced with Multi-Walled Carbon Nanotubes and Bovine Serum Albumin for Bone Substitute Applications. In AIP Conference Proceedings, Pinang, Malaysia. AIP Publishing LLC.
  • Rajesh, R.; Senthilkumar, N.; Hariharasubramanian, A.; Ravichandran, Y. D. Review on Hydroxyapatite-Carbon Nanotube Composites and Some of Their Applications. Int. J. Pharm. Pharm. Sci. 2012, 4, 23–27.
  • Ruan, Z.; Tian, Y.; Ruan, J.; Cui, G.; Iqbal, K.; Iqbal, A.; Ye, H.; Yang, Z.; Yan, S. Synthesis of Hydroxyapatite/Multi-Walled Carbon Nanotubes for the Removal of Fluoride Ions from Solution. Appl. Surf. Sci. 2017, 412, 578–590. DOI: 10.1016/j.apsusc.2017.03.215.
  • Narwade, V. N.; Kovac, J.; Bogle, K. A.; Kokol, V. Hydroxyapatite Conjugated Graphene Nanoplatelets vs. Multi-Walled Carbon Nanotubes for Enhanced Dye Removal. DWT 2020, 192, 340–357. DOI: 10.5004/dwt.2020.25768.
  • Matandabuzo, M.; Ajibade, P. A. Synthesis and Surface Functionalization of Multi-Walled Carbon Nanotubes with Imidazolium and Pyridinium-Based Ionic Liquids: Thermal Stability, Dispersibility and Hydrophobicity Characteristics. J. Mol. Liq. 2018, 268, 284–293. DOI: 10.1016/j.molliq.2018.07.028.
  • Pifferi, V.; Cappelletti, G.; Di Bari, C.; Meroni, D.; Spadavecchia, F.; Falciola, L. Multi-Walled Carbon Nanotubes (MWCNTs) Modified Electrodes: Effect of Purification and Functionalization on the Electroanalytical Performances. Electrochim. Acta 2014, 146, 403–410. DOI: 10.1016/j.electacta.2014.09.099.
  • Zhao, X.; Chen, X.; Zhang, L.; Liu, Q.; Wang, Y.; Zhang, W.; Zheng, J. Preparation of Nano-Hydroxyapatite Coated Carbon Nanotube Reinforced Hydroxyapatite Composites. Coatings 2018, 8, 357. DOI: 10.3390/coatings8100357.
  • Abbasian, M.; Ghaeminia, H.; Jaymand, M. A Facile and Efficient Strategy for the Functionalization of Multiple-Walled Carbon Nanotubes Using Well-Defined Polypropylene-Grafted Polystyrene. Appl. Phys. A. 2018, 124, 522. DOI: 10.1007/s00339-018-1943-4.
  • Kumar, R.; Kamakshi, Kumar, M.; Awasthi, K. Functionalized Pd-Decorated and Aligned MWCNTs in Polycarbonate as a Selective Membrane for Hydrogen Separation. Int. J. Hydrog. Energy 2016, 41, 23057–23066.
  • Lin, W.; Xiu, Y.; Zhu, L.; Moon, K-s.; Wong, C. P. Assembling of Carbon Nanotube Structures by Chemical Anchoring for Packaging Applications. Presented at the Electronic Components and Technology Conference, Orlando, Florida, USA, 2008, pp 421–426.
  • Montanheiro, T. L. d. A.; Cristóvan, F. H.; Machado, J. P. B.; Tada, D. B.; Durán, N.; Lemes, A. P. Effect of MWCNT Functionalization on Thermal and Electrical Properties of PHBV/MWCNT Nanocomposites. J. Mater. Res. 2015, 30, 55–65. DOI: 10.1557/jmr.2014.303.
  • Gheisari, H.; Karamian, E.; Abdellahi, M. A Novel Hydroxyapatite–Hardystonite Nanocomposite Ceramic. Ceram. Int. 2015, 41, 5967–5975. DOI: 10.1016/j.ceramint.2015.01.033.
  • Manoj, M.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C. Core–Shell Hydroxyapatite/Mg Nanostructures: Surfactant Free Facile Synthesis, Characterization and Their in Vitro Cell Viability Studies against Leukaemia Cancer Cells (K562). RSC Adv. 2015, 5, 48705–48711. DOI: 10.1039/C5RA04663G.
  • Jitjamnong, J.; Luengnaruemitchai, A.; Samanwonga, N.; Chuaykarn, N. Biodiesel Production from Canola Oil and Methanol Using Ba Impregnated Calcium Oxide with Microwave Irradiation-Assistance. Chiang Mai J. Sci. 2019, 46, 987–1000.
  • Bansal, M.; Lal, C.; Srivastava, R.; Kamalasanan, M.; Tanwar, L. Comparison of Structure and Yield of Multiwall Carbon Nanotubes Produced by the CVD Technique and a Water Assisted Method. Phys. B. 2010, 405, 1745–1749. DOI: 10.1016/j.physb.2010.01.031.
  • Nazib, A.; Zaine, I.; Napiah, N.; Yusof, A.; Alias, A.; Ali, A. M. M.; Khalid, S. Study on Dispersion and Characterization of Functionalized MWCNTs Prepared by Wet Oxidation. AMM 2014, 661, 8–13. DOI: 10.4028/www.scientific.net/AMM.661.8.
  • Ali, B.; Biak, D. R. A.; S.M, S.; A.W, Z.; W, A.; Yusoff H, M.; T, S. Preparation of Carbon Nanotubes via Chemical Technique (Modified Staudenmaier Method). NANOASIA 2017, 7, 113–122. DOI: 10.2174/2210681206666160711161421.
  • Nie, P.; Min, C.; Song, H.-J.; Chen, X.; Zhang, Z.; Zhao, K. Preparation and Tribological Properties of Polyimide/Carboxyl-Functionalized Multi-Walled Carbon Nanotube Nanocomposite Films under Seawater Lubrication. Tribol. Lett. 2015, 1, 58.
  • Ingham, B.; Toney, M. F. 1 – X-Ray Diffraction for Characterizing Metallic Films. In Metallic Films for Electronic, Optical and Magnetic Applications, Barmak, K., Coffey, K., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2014; pp 3–38.
  • Chaudhary, D.; Singh, S.; Vankar, V.; Khare, N. ZnO Nanoparticles Decorated Multi-Walled Carbon Nanotubes for Enhanced Photocatalytic and Photoelectrochemical Water Splitting. J. Photochem. Photobiol. A 2018, 351, 154–161. DOI: 10.1016/j.jphotochem.2017.10.018.
  • Ion, R.-M.; Iancu, L.; Vasilievici, G.; Grigore, M.; Andrei, R.; Radu, G.-I.; Grigorescu, R.; Teodorescu, S.; Bucurica, I.; Ion, M.-L.; et al. Ion-Substituted Carbonated Hydroxyapatite Coatings for Model Stone Samples. Coatings 2019, 9, 231. DOI: 10.3390/coatings9040231.
  • Brundavanam, R. K.; Poinern, G. E. J.; Fawcett, D. Modelling the Crystal Structure of a 30 nm Sized Particle Based Hydroxyapatite Powder Synthesised under the Influence of Ultrasound Irradiation from X-Ray Powder Diffraction Data. Am. J. Mater. Sci. 2013, 3, 84–90.
  • Kang, Z.; Wang, E.; Gao, L.; Lian, S.; Jiang, M.; Hu, C.; Xu, L. One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite. J. Am. Chem. Soc. 2003, 125, 13652–13653. DOI: 10.1021/ja037399m.
  • Wayne Rasband. FFT Measurements - ImageJ, 29th September 2020. https://imagej.nih.gov/ij/docs/examples/tem/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.