132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Strain effect on the thermal transport property of gamma (γ)-graphyne

Pages 596-600 | Received 31 Dec 2020, Accepted 05 Jan 2021, Published online: 13 Jan 2021

References

  • Pop, E.; Sinha, S.; Goodson, K. E. Heat Generation and Transport in Nanometer-Scale Transistors. Proc. IEEE 2006, 94, 1587–1601. DOI: 10.1109/JPROC.2006.879794.
  • Padture, N. P.; Gell, M.; Jordan, E. H. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002, 296, 280–284. DOI: 10.1126/science.1068609.
  • Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114. DOI: 10.1038/nmat2090.
  • Wang, L.; Li, B. Phononics Gets Hot. Phys. World 2008, 21, 27–29. DOI: 10.1088/2058-7058/21/03/31.
  • Xie, G.; Ding, D.; Zhang, G. Phonon Coherence and Its Effect on Thermal Conductivity of Nanostructures. Advances in Physics: X 2018, 3, 1480417. DOI: 10.1080/23746149.2018.1480417.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI: 10.1021/nl0731872.
  • Xu, Y.; Chen, X.; Gu, B.-L.; Duan, W. Intrinsic Anisotropy of Thermal Conductance in Graphene Nanoribbons. Appl. Phys. Lett. 2009, 95, 233116. DOI: 10.1063/1.3272678.
  • Jiang, J.-W.; Wang, J.-S.; Li, B. Thermal Conductance of Graphene and Dimerite. Phys. Rev. B 2009, 79, 205418. DOI: 10.1103/PhysRevB.79.205418.
  • Hu, J.; Wang, Y.; Vallabhaneni, A.; Ruan, X.; Chen, Y. P. Nonlinear Thermal Transport and Negative Differential Thermal Conductance in Graphene Nanoribbons. Appl. Phys. Lett. 2011, 99, 113101. DOI: 10.1063/1.3630026.
  • Hu, J.; Ruan, X.; Chen, Y. P. Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study. Nano Lett. 2009, 9, 2730–2735. DOI: 10.1021/nl901231s.
  • Yang, N.; Zhang, G.; Li, B. Thermal Rectification in Asymmetric Graphene Ribbons. Appl. Phys. Lett. 2009, 95, 033107. DOI: 10.1063/1.3183587.
  • Ouyang, T.; Chen, Y.; Xie, Y.; Wei, X. L.; Yang, K.; Yang, P.; Zhong, J. Ballistic Thermal Rectification in Asymmetric Three-Terminal Graphene Nanojunctions. Phys. Rev. B 2010, 82, 245403. DOI: 10.1103/PhysRevB.82.245403.
  • Nayebi, P.; Zaminpayma, E.; Emami-Razavi, M. Study of Graphene Device Electronic Properties with Horizontal and Vertical Double Vacancy Defects. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 886–890. DOI: 10.1080/1536383X.2020.1777543.
  • Hirsch, A. The Era of Carbon Allotropes. Nat. Mater. 2010, 9, 868–871. DOI: 10.1038/nmat2885.
  • Ivanovskii, A. L. Graphynes and Graphdyines. Prog. Solid State Chem. 2013, 41, 1–19. DOI: 10.1016/j.progsolidstchem.2012.12.001.
  • Cataldo, F.; Ori, O.; Putz, M. V. From Graphyne to Cata-Condensed (Acenographynes) and Peri-Condensed PAHs-Graphyne Derivatives. Fullerenes Nanotubes Carbon Nanostruct. 2018, 26, 535–544. DOI: 10.1080/1536383X.2018.1456426.
  • Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure‐Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. J. Chem. Phys. 1987, 87, 6687–6699. DOI: 10.1063/1.453405.
  • Cranford, S. W.; Buehler, M. J. Mechanical Properties of Graphyne. Carbon 2011, 49, 4111–4121. DOI: 10.1016/j.carbon.2011.05.024.
  • Zhang, Y. Y.; Pei, Q. X.; Wang, C. M. Mechanical Properties of Graphynes under Tension: A Molecular Dynamics Study. Appl. Phys. Lett. 2012, 101, 081909. DOI: 10.1063/1.4747719.
  • Zhang, H.; Zhao, M.; He, X.; Wang, Z.; Zhang, X.; Liu, X. High Mobility and High Storage Capacity of Lithium in sp–sp2 Hybridized Carbon Network: The Case of Graphyne. J. Phys. Chem. C 2011, 115, 8845–8850. DOI: 10.1021/jp201062m.
  • Ni, Y.; Yao, K.-L.; Fu, H.-H.; Gao, G.-Y.; Zhu, S.-C.; Luo, B.; Wang, S.-L.; Li, R.-X. The Transport Properties and New Device Design: The Case of 6,6,12-Graphyne Nanoribbons. Nanoscale 2013, 5, 4468–4475. DOI: 10.1039/C3NR00731F.
  • Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet. J. Phys. Chem. C 2011, 115, 20466–20470. DOI: 10.1021/jp206751m.
  • Zhou, J.; Lv, K.; Wang, Q.; Chen, X. S.; Sun, Q.; Jena, P. Electronic Structures and Bonding of Graphyne Sheet and Its BN Analog. J. Chem. Phys. 2011, 134, 174701. DOI: 10.1063/1.3583476.
  • Pan, L. D.; Zhang, L. Z.; Song, B. Q.; Du, S. X.; Gao, H. J. Graphyne- and Graphdiyne-Based Nanoribbons: Density Functional Theory Calculations of Electronic Structures. Appl. Phys. Lett. 2011, 98, 173102. DOI: 10.1063/1.3583507.
  • Luo, G.; Qian, X.; Liu, H.; Qin, R.; Zhou, J.; Li, L.; Gao, Z.; Wang, E.; Mei, W.-N.; Lu, J.; et al. Quasiparticle Energies and Excitonic Effects of the Two-Dimensional Carbon Allotrope Graphdiyne: Theory and Experiment. Phys. Rev. B 2011, 84, 075439. DOI: 10.1103/PhysRevB.84.075439.
  • Ren, J.; Zhang, N. C.; Zhang, S. B.; Liu, P. P. Effect of 3D-Transition Metal Doping Concentration on Electronic Structure and Magnetic Properties of Γ-Graphyne. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 684–694. DOI: 10.1080/1536383X.2019.1628023.
  • Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 2012, 108, 086804. DOI: 10.1103/PhysRevLett.108.086804.
  • Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of Graphdiyne Nanoscale films. Chem. Commun. (Camb) 2010, 46, 3256–3258. DOI: 10.1039/B922733D.
  • Qian, X.; Ning, Z.; Li, Y.; Liu, H.; Ouyang, C.; Chen, Q.; Li, Y. Construction of Graphdiyne Nanowires with High-Conductivity and Mobility. Dalton Trans. 2012, 41, 730–733. DOI: 10.1039/C1DT11641J.
  • Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. ACS Nano. 2011, 5, 2593–2600. DOI: 10.1021/nn102472s.
  • Ouyang, T.; Chen, Y.; Liu, L.-M.; Xie, Y.; Wei, X.; Zhong, J. Thermal Transport in Graphyne Nanoribbons. Phys. Rev. B 2012, 85, 235436. DOI: 10.1103/PhysRevB.85.235436.
  • Zhang, Y. Y.; Pei, Q. X.; Wang, C. M. A Molecular Dynamics Investigation on Thermal Conductivity of Graphynes. Comput. Mater. Sci. 2012, 65, 406–410. DOI: 10.1016/j.commatsci.2012.07.044.
  • Sevinçli, H.; Sevik, C. Electronic, Phononic, and Thermoelectric Properties of Graphyne Sheets. Appl. Phys. Lett. 2014, 105, 223108. DOI: 10.1063/1.4902920.
  • Ouyang, T.; Hu, M. Thermal Transport and Thermoelectric Properties of Beta-Graphyne Nanostructures. Nanotechnology 2014, 25, 245401. DOI: 10.1088/0957-4484/25/24/245401.
  • Ouyang, T.; Xiao, H.; Xie, Y.; Wei, X.; Chen, Y.; Zhong, J. Thermoelectric Properties of Gamma-Graphyne Nanoribbons and Nanojunctions. J. Appl. Phys. 2013, 114, 073710. DOI: 10.1063/1.4818616.
  • Cao, W.; Xiao, H.; Zhong, J. Enhancement of Thermoelectric Performance of Gamma-Graphyne through Incorporating a Hexagonal Quantum Dot. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 205–210. DOI: 10.1080/1536383X.2016.1257990.
  • Zhou, W.-X.; Chen, K.-Q. Enhancement of Thermoelectric Performance in β-Graphyne Nanoribbons by Suppressing Phononic Thermal Conductance. Carbon 2015, 85, 24–27. DOI: 10.1016/j.carbon.2014.12.059.
  • Wang, X.-M.; Mo, D.-C.; Lu, S.-S. On the Thermoelectric Transport Properties of Graphyne by the first-principles method. J. Chem. Phys. 2013, 138, 204704. DOI: 10.1063/1.4806069.
  • Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons. J. Phys: Condens. Matter 2002, 14, 783–802. DOI: 10.1088/0953-8984/14/4/312.
  • Mingo, N. Anharmonic Phonon Flow through Molecular-Sized Junctions. Phys. Rev. B 2006, 74, 125402. DOI: 10.1103/PhysRevB.74.125402.
  • Yamamoto, T.; Watanabe, K. Nonequilibrium Green's Function Approach to Phonon Transport in Defective Carbon Nanotubes. Phys. Rev. Lett. 2006, 96, 255503. DOI: 10.1103/PhysRevLett.96.255503.
  • Wang, J. S.; Wang, J.; Lü, J. T. Quantum Thermal Transport in Nanostructures. Eur. Phys. J. B 2008, 62, 381–404. DOI: 10.1140/epjb/e2008-00195-8.
  • Guo, Z.; Zhang, D.; Gong, X.-G. Thermal Conductivity of Graphene Nanoribbons. Appl. Phys. Lett. 2009, 95, 163103. DOI: 10.1063/1.3246155.
  • Wei, N.; Xu, L.; Wang, H.-Q.; Zheng, J.-C. Strain Engineering of Thermal Conductivity in Graphene Sheets and Nanoribbons: A Demonstration of Magic Flexibility. Nanotechnology 2011, 22, 105705. DOI: 10.1088/0957-4484/22/10/105705.
  • Emmeline Yeo, P. S.; Loh, K. P.; Gan, C. K. Strain Dependence of the Heat Transport Properties of Graphene Nanoribbons. Nanotechnology 2012, 23, 495702. DOI: 10.1088/0957-4484/23/49/495702.
  • Hu, M.; Zhang, X.; Poulikakos, D. Anomalous Thermal Response of Silicene to Uniaxial Stretching. Phys. Rev. B. 2013, 87, 195417. DOI: 10.1103/PhysRevB.87.195417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.