250
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Green and one step modification of graphene oxide using natural substances

, &
Pages 716-723 | Received 15 Jan 2021, Accepted 28 Jan 2021, Published online: 24 Feb 2021

References

  • Sánchez-Campos, D.; Rodríguez-Lugo, V.; Sánchez-Vargas, F. C.; Mendoza-Anaya, D.; Salinas-Rodríguez, E.; Escobar-Alarcón, L.; Reyes-Valderrama, M. I. Simple Process and Uncomplicated Reduction of Graphene Oxide. Mater. Chem. Phys. 2020, 242, 122325. DOI: 10.1016/j.matchemphys.2019.122325.
  • Azizighannad, S.; Mitra, S. Stepwise Reduction of Graphene Oxide (GO) and Its Effects on Chemical and Colloidal Properties. Sci. Rep. 2018, 8, 1–8. DOI: 10.1038/s41598-018-28353-6.
  • Geim, A. K.; Novoselov, K. S. In Nanoscience and Technology: A Collection of Reviews from Nature Journals. Assembly Autom. 2010, 20, 11–19.
  • Wang, J.; Salihi, E. C.; Šiller, L. Green Reduction of Graphene Oxide Using Alanine. Mater. Sci. Eng. C: Mater. Biol. Appl. 2017, 72, 1–6. DOI: 10.1016/j.msec.2016.11.017.
  • Thakur, S.; Karak, N. Alternative Methods and Nature-Based Reagents for the Reduction of Graphene Oxide: A Review. Carbon 2015, 94, 224–242. DOI: 10.1016/j.carbon.2015.06.030.
  • Chua, C. K.; Pumera, M. Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. DOI: 10.1039/c3cs60303b.
  • Jiang, C.; Zhao, H.; Xiao, H.; Wang, Y.; Liu, L.; Chen, H.; Shen, C.; Zhu, H.; Liu, Q. Recent Advances in Graphene-Family Nanomaterials for Effective Drug Delivery and Phototherapy. Expert Opin. Drug Deliv. 2021, 18, 119–138. DOI: 10.1080/17425247.2020.1798400.
  • Çalışkan Salihi, E.; Wang, J.; Kabacaoğlu, G.; Kırkulak, S.; Šiller, L. Graphene Oxide as a New Generation Adsorbent for the Removal of Antibiotics from Waters. Sep. Sci. Technol. 2021, 56, 453–461. DOI: 10.1080/01496395.2020.1717533.
  • Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. DOI: 10.1039/D0RA01068E.
  • Slonczewski, J. C.; Weiss, P. R. Band Structure of Graphite. Phys. Rev. 1958, 109, 272–279. DOI: 10.1103/PhysRev.109.272.
  • Jiang, C.; An, D.; Wang, Z.; Zhang, S.; An, X.; Bo, J.; Yan, G.; Moon, K. S.; Wong, C. A Sustainable Reduction Route of Graphene Oxide by Industrial Waste Lignin for Versatile Applications in Energy and Environment. J. Cleaner Prod. 2020, 268, 122019. DOI: 10.1016/j.jclepro.2020.122019.
  • Guex, L. G.; Sacchi, B.; Peuvot, K. F.; Andersson, R. L.; Pourrahimi, A. M.; Ström, V.; Farris, S.; Olsson, R. T. Experimental Review: Chemical Reduction of Graphene Oxide (GO) to Reduced Graphene Oxide (rGO) by Aqueous Chemistry. Nanoscale 2017, 9, 9562–9571. DOI: 10.1039/c7nr02943h.
  • Salihi, E. Ç.; Wang, J.; Coleman, D. J.; Šiller, L. Enhanced Removal of Nickel(II) Ions from Aqueous Solutions by SDS-Functionalized Graphene Oxide. Sep. Sci. Technol. 2016, 51, 1317–1327. DOI: 10.1080/01496395.2016.1162172.
  • Ma, J.; Ping, D.; Dong, X. Recent Developments of Graphene Oxide-Based Membranes: A Review. Membranes 2017, 7, 52.
  • Arias Arias, F.; Guevara, M.; Tene, T.; Angamarca, P.; Molina, R.; Valarezo, A.; Salguero, O.; Vacacela Gomez, C.; Arias, M.; Caputi, L. S. The Adsorption of Methylene Blue on Eco-Friendly Reduced Graphene Oxide. Nanomaterials 2020, 10, 681. DOI: 10.3390/nano10040681.
  • Khan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. The Role of Graphene Oxide and Graphene Oxide-Based Nanomaterials in the Removal of Pharmaceuticals from Aqueous Media: A Review. Environ. Sci. Pollut. Res. Int. 2017, 24, 7938–7958. DOI: 10.1007/s11356-017-8388-8.
  • Chouhan, A.; Mungse, H. P.; Khatri, O. P. Surface Chemistry of Graphene and Graphene Oxide: A Versatile Route for Their Dispersion and Tribological Applications. Adv. Colloid Interface Sci. 2020, 283, 102215. DOI: 10.1016/j.cis.2020.102215.
  • Mousavi, S. M.; Low, F. W.; Hashemi, S. A.; Samsudin, N. A.; Shakeri, M.; Yusoff, Y.; Rahsepar, M.; Lai, C. W.; Babapoor, A.; Soroshnia, S.; et al. Development of Hydrophobic Reduced Graphene Oxide as a New Efficient Approach for Photochemotherapy. RSC Adv. 2020, 10, 12851–12863. DOI: 10.1039/D0RA00186D.
  • Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. DOI: 10.1021/ja803688x.
  • Aunkor, M. T.; Mahbubul, I. M.; Saidur, R.; Metselaar, H. S. The Green Reduction of Graphene Oxide. RSC Adv. 2016, 6, 27807–27828. DOI: 10.1039/C6RA03189G.
  • Lee, H.; Choi, T. K.; Lee, Y. B.; Cho, H. R.; Ghaffari, R.; Wang, L.; Choi, H. J.; Chung, T. D.; Lu, N.; Hyeon, T.; et al. A Graphene-Based Electrochemical Device with Thermoresponsive Microneedles for Diabetes Monitoring and Therapy. Nat. Nanotechnol. 2016, 11, 566–572. DOI: 10.1038/nnano.2016.38.
  • Song, S.; Shen, H.; Wang, Y.; Chu, X.; Xie, J.; Zhou, N.; Shen, J. Biomedical Application of Graphene: From Drug Delivery, Tumor Therapy, to Theranostics. Colloids Surf B: Biointerfaces 2020, 185, 110596. DOI: 10.1016/j.colsurfb.2019.110596.
  • Harun SW, editor. Handbook of Graphene. Volume 8: Technology and Innovations. John Wiley & Sons: USA, 2019.
  • De Silva, K. K.; Huang, H. H.; Joshi, R. K.; Yoshimura, M. Chemical Reduction of Graphene Oxide Using Green Reductants. Carbon 2017, 119, 190–199. DOI: 10.1016/j.carbon.2017.04.025.
  • De Silva, K. K.; Huang, H. H.; Yoshimura, M. Progress of Reduction of Graphene Oxide by Ascorbic Acid. Appl. Surf. Sci. 2018, 447, 338–346. DOI: 10.1016/j.apsusc.2018.03.243.
  • Tian, J. L.; Zhang, H. Y. Preparation and Characterization of Reduced Graphene Oxide Using Ascorbic Acid and Sodium Citrate as Binary Reductant. Fuller. Nanotub. Car. Nanostruct. 2017, 25, 17–22. DOI: 10.1080/1536383X.2016.1247052.
  • Khan, M.; Al-Marri, A. H.; Khan, M.; Shaik, M. R.; Mohri, N.; Adil, S. F.; Kuniyil, M.; Alkhathlan, H. Z.; Al-Warthan, A.; Tremel, W.; et al. Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora Persica L. root (Miswak) Extract. Nanoscale Res. Lett. 2015, 10, 987–989. DOI: 10.1186/s11671-015-0987-z.
  • Zhou, X.; Huang, H.; Zhu, R.; Chen, R.; Sheng, X.; Xie, D.; Mei, Y. Green Modification of Graphene Oxide with Phytic Acid and Its Application in Anticorrosive Water-Borne Epoxy Coatings. Prog. Org. Coat. 2020, 143, 105601. DOI: 10.1016/j.porgcoat.2020.105601.
  • Javidparvar, A. A.; Naderi, R.; Ramezanzadeh, B. L-Cysteine Reduced/Functionalized Graphene Oxide Application as a Smart/Control Release Nanocarrier of Sustainable Cerium Ions for Epoxy Coating Anti-Corrosion Properties Improvement. J. Hazard. Mater. 2020, 389, 122135. DOI: 10.1016/j.jhazmat.2020.122135.
  • Khojasteh, H.; Safajou, H.; Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Heydaryan, K.; Yazdani, M. Economic Procedure for Facile and Eco-Friendly Reduction of Graphene Oxide by Plant Extracts; A Comparison and Property Investigation. J. Cleaner Prod. 2019, 229, 1139–1147. DOI: 10.1016/j.jclepro.2019.04.350.
  • Mahmoud, A. E. Eco-Friendly Reduction of Graphene Oxide via Agricultural Byproducts or Aquatic Macrophytes. Mater. Chem. Phys. 2020, 253, 6, 123336. DOI: 10.1016/j.matchemphys.2020.123336.
  • Silva, C.; Simon, F.; Friedel, P.; Pötschke, P.; Zimmerer, C. Elucidating the Chemistry behind the Reduction of Graphene Oxide Using a Green Approach with Polydopamine. Nanomaterials 2019, 9, 902. DOI: 10.3390/nano9060902.
  • Demirhan, K. Production of Graphene Based Materials for Drug Delivery Applications. Msc. Thesis, Marmara University, Institute of Health Sciences, Istanbul, 2020.
  • Hummers, W. S., Jr.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Adhikari, B.; Banerjee, A. Catalytic Properties of Graphene–Metal Nanoparticle Hybrid Prepared Using an Aromatic Amino Acid as the Reducing Agent. Mater. Chem. Phys. 2013, 139, 450–458. DOI: 10.1016/j.matchemphys.2013.01.020.
  • Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-Friendly Method to Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater. 2010, 22, 2213–2218. DOI: 10.1021/cm902635j.
  • Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Adv. Mater. 2008, 20, 4490–4493. DOI: 10.1002/adma.200801306.
  • Mei, X.; Ouyang, J. Ultrasonication-Assisted Ultrafast Reduction of Graphene Oxide by Zinc Powder at Room Temperature. Carbon 2011, 49, 5389–5397. DOI: 10.1016/j.carbon.2011.08.019.
  • Upadhyay, R. K.; Soin, N.; Bhattacharya, G.; Saha, S.; Barman, A.; Roy, S. S. Grape Extract Assisted Green Synthesis of Reduced Graphene Oxide for Water Treatment Application. Mater. Lett. 2015, 160, 355–358. DOI: 10.1016/j.matlet.2015.07.144.
  • Suresh, D.; Nethravathi, P. C.; Nagabhushana, H.; Sharma, S. C. Spinach Assisted Green Reduction of Graphene Oxide and Its Antioxidant and Dye Absorption Properties. Ceram. Int. 2015, 41, 4810–4813. DOI: 10.1016/j.ceramint.2014.12.036.
  • Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of Graphene Oxide via L-Ascorbic Acid. Chem. Commun. (Camb) 2010, 46, 1112–1114. DOI: 10.1039/b917705a.
  • Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C. 2010, 114, 6426–6432. DOI: 10.1021/jp100603h.
  • Chen, D.; Li, L.; Guo, L. An Environment-Friendly Preparation of Reduced Graphene Oxide Nanosheets via Amino Acid. Nanotechnology 2011, 22, 325601. DOI: 10.1088/0957-4484/22/32/325601.
  • Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Dual Role of Glycine as a Chemical Functionalizer and a Reducing Agent in the Preparation of Graphene: An Environmentally Friendly Method. J. Mater. Chem. 2012, 22, 9696–9703. DOI: 10.1039/c2jm00011c.
  • Ma, J.; Wang, X.; Liu, Y.; Wu, T.; Liu, Y.; Guo, Y.; Li, R.; Sun, X.; Wu, F.; Li, C.; Gao, J. Reduction of Graphene Oxide with l-Lysine to Prepare Reduced Graphene Oxide Stabilized with Polysaccharide Polyelectrolyte. J. Mater. Chem. A. 2013, 1, 2192–2201. DOI: 10.1039/C2TA00340F.
  • Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203–212. DOI: 10.1007/s12274-008-8021-8.
  • Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J. Synthesis of Enhanced Hydrophilic and Hydrophobic Graphene Oxide Nanosheets by a Solvothermal Method. Carbon 2009, 47, 68–72. DOI: 10.1016/j.carbon.2008.09.002.
  • Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene Oxide Doped Polyaniline for Supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161. DOI: 10.1016/j.elecom.2009.03.036.
  • Seol, Y. G.; Trung, T. Q.; Yoon, O. J.; Sohn, I. Y.; Lee, N. E. Nanocomposites of Reduced Graphene Oxide Nanosheets and Conducting Polymer for Stretchable Transparent Conducting Electrodes. J. Mater. Chem. 2012, 22, 23759–23766. DOI: 10.1039/c2jm33949h.
  • Ossonon, B. D.; Bélanger, D. Synthesis and Characterization of Sulfophenyl-Functionalized Reduced Graphene Oxide Sheets. RSC Adv. 2017, 7, 27224–27234. DOI: 10.1039/C6RA28311J.
  • Zhang, Z.; Chen, H.; Xing, C.; Guo, M.; Xu, F.; Wang, X.; Gruber, H. J.; Zhang, B.; Tang, J. Sodium Citrate: A Universal Reducing Agent for Reduction/Decoration of Graphene Oxide with au Nanoparticles. Nano. Res. 2011, 4, 599–611. DOI: 10.1007/s12274-011-0116-y.
  • Feng, H.; Wang, X.; Wu, D. Fabrication of Spirocyclic Phosphazene Epoxy-Based Nanocomposites with Graphene via Exfoliation of Graphite Platelets and Thermal Curing for Enhancement of Mechanical and Conductive Properties. Ind. Eng. Chem. Res. 2013, 52, 10160–10171. DOI: 10.1021/ie400483x.
  • Luo, F.; Wu, K.; Guo, H.; Zhao, Q.; Lu, M. Anisotropic Thermal Conductivity and Flame Retardancy of Nanocomposite Based on Mesogenic Epoxy and Reduced Graphene Oxide Bulk. Compos. Sci. Technol. 2016, 132, 1–8. DOI: 10.1016/j.compscitech.2016.06.007.
  • Choi, E. Y.; Han, T. H.; Hong, J.; Kim, J. E.; Lee, S. H.; Kim, H. W.; Kim, S. O. Noncovalent Functionalization of Graphene with End-Functional Polymers. J. Mater. Chem. 2010, 20, 1907–1912. DOI: 10.1039/b919074k.
  • Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R. Raman Spectra of Graphite Oxide and Functionalized Graphene sheets. Nano Lett. 2008, 8, 36–41. DOI: 10.1021/nl071822y.
  • Douda, J.; Vargas, C. G.; Basiuk, E. V.; Cano, A. D.; García, J. F.; Contreras, X. H. Optical Properties of Amine-Functionalized Graphene Oxide. Appl. Nanosci. 2019, 9, 567–578. DOI: 10.1007/s13204-019-00956-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.