365
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance of PEG-MWCNTs composites as shape-stabilised phase change materials for thermal energy storage

, , , , , & show all
Pages 732-738 | Received 02 Feb 2021, Accepted 04 Feb 2021, Published online: 17 Feb 2021

References

  • Boumanchar, I.; Charafeddine, K.; Chhiti, Y.; M’hamdi Alaoui, F. E.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Biomass Higher Heating Value Prediction from Ultimate Analysis Using Multiple Regression and Genetic Programming. Biomass Conv. Bioref. 2019, 9, 499–509. DOI: 10.1007/s13399-019-00386-5.
  • Abala, I.; M’hamdi Alaoui, F. E.; Chhiti, Y.; Eddine, A. S.; Rujas, N. M.; Aguilar, F. Density of Biofuel Mixtures (Dibutyl Ether + Heptane) at Temperatures from (298.15–393.15) K and at Pressures up to 140 MPa: Experimental Data and PC-SAFT Modeling. Fluid Phase Equilib. 2019, 51, 35–44. DOI: 10.1016/j.fluid.2019.02.028.
  • Boumanchar, I.; Chhiti, Y.; M’hamdi Alaoui, F. E.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Municipal Solid Waste Higher Heating Value Prediction from Ultimate Analysis Using Multiple Regression and Genetic Programming Techniques. Waste Manag. Res. 2019, 37, 578–589. DOI: 10.1177/0734242X18816797.
  • Pop, O. G.; Fechete Tutunaru, L.; Bode, F.; Abrudan, A. C.; Balan, M. C. Energy Efficiency of PCM Integrated in Fresh Air Cooling Systems in Different Climatic Conditions. Appl. Energy 2018, 212, 976–996. DOI: 10.1016/j.apenergy.2017.12.122.
  • Tian, B.; Yang, W.; He, F.; Xie, C.; Zhang, K.; Fan, J.; Wu, J. Paraffin/Carbon Aerogel Phase Change Materials with High Enthalpy and Thermal Conductivity. Fullerenes Nanotub. Carbon Nanostruct. 2017, 25, 512–518. DOI: 10.1080/1536383X.2017.1347638.
  • Mudila, H.; Rana, S.; Zaidi, M. G. H.; Alam, S. Polyindole/Graphene Oxide Nanocomposites: The Novel Material for Electrochemical Energy Storage. Fullerenes Nanotub. Carbon Nanostruct. 2015, 23, 20–26. DOI: 10.1080/1536383X.2013.787604.
  • Brzhezinskaya, M.; Svechnikov, N. Y.; Stankevich, V. G.; Lebedev, A. M.; Sukhanov, L. P.; Menshikov, K. A. Characterization of Amorphous Hydrocarbon CDx Films (x ∼ 0.5) for Energy Storage Applications. Fullerenes Nanotub. Carbon Nanostruct. 2020, 28, 173–178. DOI: 10.1080/1536383X.2019.1686616.
  • Harmen, Y.; Chhiti, Y.; M’Hamdi Alaoui, F. E.; Bentiss, F.; El Khouakhi, M.; Jama, C.; Duquesne, S.; Bensitel, M.; Deshayes, L. Thermal and Energetic Behaviour of Solid-Solid-Liquid Phase Change Materials Storage Unit: Experimental and Numerical Comparative Study of the Top, Bottom and Horizontal Configurations. J. Energy Storage 2021, 33, 102025. DOI: 10.1016/j.est.2020.102025.
  • Alva, G.; Lin, Y.; Fang, G. An Overview of Thermal Energy Storage Systems. Energy 2018, 144, 341–378. DOI: 10.1016/j.energy.2017.12.037.
  • Miró, L.; Gasia, J.; Cabeza, L. F. Thermal Energy Storage (TES) for Industrial Waste Heat (IWH) Recovery: A Review. Appl. Energy 2016, 179, 284–301. DOI: 10.1016/j.apenergy.2016.06.147.
  • Xu, B.; Li, P.; Chan, C. Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: A Review to Recent Developments. Appl. Energy 2015, 160, 286–307. DOI: 10.1016/j.apenergy.2015.09.016.
  • Ma, T.; Li, Z.; Zhao, J. Photovoltaic Panel Integrated with Phase Change Materials (PV-PCM): Technology Overview and Materials Selection. Renew. Sustain. Energy Rev. 2019, 116, 109406. DOI: 10.1016/j.rser.2019.109406.
  • Pomianowski, M.; Heiselberg, P.; Zhang, Y. Review of Thermal Energy Storage Technologies Based on PCM Application in Buildings. Energy Build 2013, 67, 56–69. DOI: 10.1016/j.enbuild.2013.08.006.
  • Mehling, H.; Cabeza, L. F. Heat and Cold Storage with PCM. Springer: Berlin, 2008. DOI: 10.1007/978-3-540-68557-9.
  • Harmen, Y.; Chhiti, Y.; Alaoui, F. E. M.; Bentiss, F.; Elkhouakhi, M.; Deshayes, L.; Jama, C.; Duquesne, S.; Bensitel, M. Storage Efficiency of Paraffin-LDPE-MWCNT Phase Change Material for Industrial Building Applications. In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 2020, pp 1–6. DOI: 10.1109/REDEC49234.2020.9163856.
  • Umair, M. M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage–A Review. Appl. Energy 2019, 235, 846–873. DOI: 10.1016/j.apenergy.2018.11.017.
  • Krupa, I.; Miková, G.; Luyt, A. S. Polypropylene as a Potential Matrix for the Creation of Shape Stabilized Phase Change Materials. Eur. Polym. J. 2007, 43, 895–907. DOI: 10.1016/j.eurpolymj.2006.12.019.
  • Zayed, M. E.; Zhao, J.; Elsheikh, A. H.; Du, Y.; Hammad, F. A.; Ma, L.; Kabeel, A. E.; Sadek, S. Performance Augmentation of Flat Plate Solar Water Collector Using Phase Change Materials and Nanocomposite Phase Change Materials: A Review. Process Safety Environ. Protect. 2019, 128, 135–157. DOI: 10.1016/j.psep.2019.06.002.
  • Al-Shannaq, R.; Kurdi, J.; Al-Muhtaseb, S.; Farid, M. Innovative Method of Metal Coating of Microcapsules Containing Phase Change Materials. Sol. Energy 2016, 129, 54–64. DOI: 10.1016/j.solener.2016.01.043.
  • Wu, S.; Zhu, D.; Zhang, X.; Huang, J. Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM). Energy Fuels 2010, 24, 1894–1898. DOI: 10.1021/ef9013967.
  • Ho, C. J.; Gao, J. Y. An Experimental Study on Melting Heat Transfer of Paraffin Dispersed with Al2O3 Nanoparticles in a Vertical Enclosure. Int. J. Heat Mass Transf. 2013, 62, 2–8. DOI: 10.1016/j.ijheatmasstransfer.2013.02.065.
  • Liu, Y.; Yu, K.; Yang, Y.; Jia, M.; Sun, F. Size Effects of Nano-Rutile TiO2 on Latent Heat Recovered of Binary Eutectic Hydrate Salt Phase Change Material. Thermochim. Acta 2020, 684, 178492. DOI: 10.1016/j.tca.2019.178492.
  • Motahar, S.; Nikkam, N.; Alemrajabi, A. A.; Khodabandeh, R.; Toprak, M. S.; Muhammed, M. A Novel Phase Change Material Containing Mesoporous Silica Nanoparticles for Thermal Storage: A Study on Thermal Conductivity and Viscosity. Int. Commun. Heat Mass Transf. 2014, 56, 114–120. DOI: 10.1016/j.icheatmasstransfer.2014.06.005.
  • Saeed, R. M.; Schlegel, J. P.; Castano, C.; Sawafta, R. Preparation and Enhanced Thermal Performance of Novel (Solid to Gel) Form-Stable Eutectic PCM Modified by Nano-Graphene Platelets. J. Energy Storage 2018, 15, 91–102. DOI: 10.1016/j.est.2017.11.003.
  • Deng, H.; Guo, Y.; He, F.; Yang, Z.; Fan, J.; He, R.; Zhang, K.; Yang, W. Paraffin@Graphene/Silicon Rubber Form-Stable Phase Change Materials for Thermal Energy Storage. Fullerenes Nanotub. Carbon Nanostruct. 2019, 27, 626–631. DOI: 10.1080/1536383X.2019.1624539.
  • He, M.; Yang, L.; Lin, W.; Chen, J.; Mao, X.; Ma, Z. Preparation, Thermal Characterization and Examination of Phase Change Materials (PCMs) Enhanced by Carbon-Based Nanoparticles for Solar Thermal Energy Storage. J. Energy Storage 2019, 25, 100874. DOI: 10.1016/j.est.2019.100874.
  • Oya, T.; Nomura, T.; Tsubota, M.; Okinaka, N.; Akiyama, T. Thermal Conductivity Enhancement of Erythritol as PCM by Using Graphite and Nickel Particles. Appl. Therm. Eng. 2013, 61, 825–828. DOI: 10.1016/j.applthermaleng.2012.05.033.
  • Czaniková, K.; Spitalsky, Z.; Krupa, I.; Omastová, M. Electrical and Mechanical Properties of Ethylene Vinyl Acetate Based Composites. MSF. 2012, 714, 193–199. DOI: 10.4028/www.scientific.net/MSF.714.193.
  • Wang, W.; Yang, X.; Fang, Y.; Ding, J.; Yan, J. Preparation and Thermal Properties of Polyethylene Glycol/Expanded Graphite Blends for Energy Storage. Appl. Energy 2009, 86, 1479–1483. DOI: 10.1016/j.apenergy.2008.12.004.
  • Sun, Q.; Yuan, Y.; Zhang, H.; Cao, X.; Sun, L. Thermal Properties of Polyethylene Glycol/Carbon Microsphere Composite as a Novel Phase Change Material. J. Therm. Anal. Calorim. 2017, 130, 1741–1749. DOI: 10.1007/s10973-017-6535-6.
  • Qi, G. Q.; Yang, J.; Bao, R. Y.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Enhanced Comprehensive Performance of Polyethylene Glycol Based Phase Change Material with Hybrid Graphene Nanomaterials for Thermal Energy Storage. Carbon N Y 2015, 88, 196–205. DOI: 10.1016/j.carbon.2015.03.009.
  • Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and Characterization of PEG/SiO2 Composites as Shape-Stabilized Phase Change Materials for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2013, 118, 48–53. DOI: 10.1016/j.solmat.2013.07.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.