264
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Research on the smart behavior of MCNT grafted CF/cement-based composites

, , ORCID Icon, ORCID Icon, &
Pages 844-851 | Received 23 Mar 2021, Accepted 25 Mar 2021, Published online: 09 Apr 2021

References

  • Xu, J.; Tang, Y.; Wang, X.; Wang, Z.; Yao, W. Application of Ureolysis-Based Microbial CaCO3 Precipitation in Self-Healing of Concrete and Inhibition of Reinforcement Corrosion. Constr. Build. Mater 2020, 265, 120364. DOI: 10.1016/j.conbuildmat.2020.120364.
  • Zuo, J.; Yao, W.; Liu, X.; Qin, J. Sensing Properties of Carbon Nanotube–Carbon Fiber/Cement Nanocomposites. J. Test. Eval. 2012, 40, 20120092. DOI: 10.1520/JTE20120092.
  • Xu, J.; Wang, X.; Zuo, J.; Liu, X. Self-Healing of Concrete Cracks by Ceramsite-Loaded Microorganisms. Adv. Mater. Sci. Eng 2018, 2018, 1–8. DOI: 10.1155/2018/5153041.
  • Zuo, J.; Yao, W.; Xu, J.; Chen, Y.; Liu, X. Effects of Carbon Nanotube-Carbon Fiber Cementitious Conductive Anode for Cathodic Protection of Reinforced Concrete. J. Test. Eval 2017, 45, 20160062. DOI: 10.1520/JTE20160062.
  • Liu, X.; Fang, T.; Zuo, J. Effect of Nano-Materials on Autogenous Shrinkage Properties of Cement Based Materials. Symmetry 2019, 11, 1144. DOI: 10.3390/sym11091144.
  • Zhang, X.; Luo, Y.; Yao, W. Influences of the Dosage of Dolomite Powder on the Fracture Properties and Volume Stability of Cement-Based Materials. Fuller. Nanotub. Car.Nanostr 2021, 1–8. DOI: 10.1080/1536383X.2021.1900125.
  • Zhang, X.; Wei, Y.; Zuo, J.; Luo, Y.; Wang, B.; Yao, W. Evolution of Hydration Process of Cement-Based Material Containing High Volume of Dolomite Powder. Fuller. Nanotub. Car.Nanostr 2021, 29, 343–351. DOI: 10.1080/1536383X.2020.1842739.
  • Chen, B.; Wu, K.; Yao, W. Conductivity of Carbon Fiber Reinforced Cement-Based Composites. Cem. Concr. Compos 2004, 26, 291–297. DOI: 10.1016/S0958-9465(02)00138-5.
  • Fakharpour, M.; Karimi, R. Electromagnetic Wave Absorption Properties of MWCNTs-COOH/Cement Composites with Different Shapes of Chiral, Armchair and Zigzag. Fuller. Nanotub. Car.Nanostr 2021, 29, 386–393. DOI: 10.1080/1536383X.2020.1849148.
  • Cao, H. Y.; Yao, W.; Qin, J. J. Seebeck Effect in Graphite-Carbon Fiber Cement Based Composite. Amr. 2011, 177, 566–569. DOI: 10.4028/www.scientific.net/AMR.177.566.
  • Folomeshkin, M. S.; Pisarevsky, Y. V.; Prosekov, P. A.; Volkovsky, Y. A.; Kumskov, A. S.; Grigoriev, Y. V.; Ligacheva, E. A.; Targonskii, A. V.; Blagov, A. E.; Kovalchuk, M. V. X-Ray Diffraction Analysis and Electron Microscopy of the Carbon Fiber Structure. Crystallogr. Rep. 2019, 64, 1–5. DOI: 10.1134/S1063774519010085.
  • Wu, B.; Xu, X.; Luo, S.; Yan, D.; Song, K.; Zhang, X.; He, F. Study on the Mechanical Properties and Strengthening Mechanism of Interface-Modified Carbon Fiber Mesh Reinforced Cement-Based Composites with SCA&HMC. Molecules 2019, 24, 3989. DOI: 10.3390/molecules24213989.
  • Zuo, J.; Yao, W.; Wu, K. Seebeck Effect and Mechanical Properties of Carbon Nanotube-Carbon Fiber/Cement Nanocomposites. Fuller. Nanotub. Car.Nanostr 2015, 23, 383–391. DOI: 10.1080/1536383X.2013.863760.
  • Liu, X.; Liao, G.; Zuo, J. Enhanced Thermoelectric Properties of Carbon Fiber-Reinforced Cement Composites (CFRCs) Utilizing Bi2Te3 with Three Doping Methods. Fuller. Nanotub. Car.Nanostr 2020, 29, 295–303. DOI: 10.1080/1536383X.2020.1839425.
  • Kang, S.-T.; Seo, J.-Y.; Park, S.-H. The Characteristics of CNT/Cement Composites with Acid-Treated MWCNTs. Adv. Mater. Sci. Eng 2015, 2015, 308725. DOI: 10.1155/2015/308725.
  • Silva, A. A.; Pinheiro, R. A.; Trava-Airoldi, V. J.; Corat, E. J. Influence of Catalyst Particles on Multi-Walled Carbon Nanotubes Morphology and Structure. Fuller. Nanotub. Car.Nanostr 2018, 26, 315–323. DOI: 10.1080/1536383X.2018.1431217.
  • Forintos, N.; Czigany, T. Multifunctional Application of Carbon Fiber Reinforced Polymer Composites: Electrical Properties of the Reinforcing Carbon fibers-A Short Review. Compos. B Eng 2019, 162, 331–343. DOI: 10.1016/j.compositesb.2018.10.098.
  • Wei, J.; Zhang, Q.; Zhao, L.; Hao, L.; Yang, C. Enhanced Thermoelectric Properties of Carbon Fiber Reinforced Cement Composites. Ceram. Int 2016, 42, 11568–11573. DOI: 10.1016/j.ceramint.2016.04.014.
  • Cui, H.; Jin, Z.; Zheng, D.; Tang, W.; Li, Y.; Yun, Y.; Lo, T. Y.; Xing, F. Effect of Carbon Fibers Grafted with Carbon Nanotubes on Mechanical Properties of Cement-Based Composites. Constr. Build. Mater 2018, 181, 713–720. DOI: 10.1016/j.conbuildmat.2018.06.049.
  • Jiang, Q.; Yang, R.; Fu, G. G.; Xie, D. Y.; Huang, B.; He, Z. W.; Zhao, Y. Preparation of the Carbon Nanotube/Carbon Fiber Composite and Application as the Electrode Material of the Electrochemical Super Capacitor. Msf. 2011, 687, 158–162.www.scientific.net/MSF.687.158. DOI: 10.4028/.
  • Ye, S.; Kim, I.-J.; Yang, S-h.; Lee, J-w.; Oh, W.-C. CVD Grown Graphene/CNT Composite as Additive Material to Improve the Performance of Electric Double Layer Capacitors (EDLCs). J. Mater. Sci: Mater. Electron. 2017, 28, 6592–6600. DOI: 10.1007/s10854-017-6349-0.
  • Zhou, J.; Yuan, M.; Li, Z.; Meng, H.; Zhang, T.; Qi, L. A Great Improvement of Tensile Properties of Cf/AZ91D Composite through Grafting CNTs onto the Surface of the Carbon Fibers. Adv. Mater. Sci. Eng. A 2019, 762, 138061. DOI: 10.1016/j.msea.2019.138061.
  • De, S.; Fulmali, A. O.; Shivangi, P. N.; Choudhury, S.; Prusty, R. K.; Ray, B. C. Interface Modification of Carbon Fiber Reinforced Epoxy Composite by Hydroxyl/Carboxyl Functionalized Carbon Nanotube. Mater. Today: Proc. 2020, 27, 1473–1478. DOI: 10.1016/j.matpr.2020.02.970.
  • Ji, F.; Liu, C.; Hu, Y.; Xu, S.; He, Y.; Zhou, J.; Zhong, Y. Chemically Grafting Carbon Nanotubes onto Carbon Fibers for Enhancing Interfacial Properties of Fiber Metal Laminate. Materials 2020, 13, 3813. DOI: 10.3390/ma13173813.
  • Xu, J.; Zhong, W. H.; Yao, W. Modeling of Conductivity in Carbon Fiber-Reinforced Cement-Based Composite. J. Mater. Sci. 2010, 45, 3538–3546. DOI: 10.1007/s10853-010-4396-5.
  • Xu, J.; Yao, W.; Wang, R. Q. Nonlinear Conduction in Carbon Fiber Reinforced Cement Mortar. Cem. Concr. Compos 2011, 33, 444–448. DOI: 10.1016/j.cemconcomp.2010.10.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.