524
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of interactions of multi-walled carbon nanotubes with benzoic acid and its 2-halogeno derivatives and their cytotoxicity

ORCID Icon, ORCID Icon & ORCID Icon
Pages 937-943 | Received 09 Apr 2021, Accepted 14 Apr 2021, Published online: 26 Apr 2021

References

  • Higson, F. K.; Focht, D. D. Degradation of 2-Bromobenzoic Acid by a Strain of Pseudomonas Aeruginosa. Appl. Environ. Microbiol. 1990, 56, 1615–1619. https://doi: 10.1128/AEM.56.6.1615-1619.1990. DOI: 10.1128/AEM.56.6.1615-1619.1990.
  • Müller, K.; Seubert, A. Separation and Determination of Fluorobenzoic Acids Using Ion Chromatography–Electrospray Mass Spectrometry. J. Chromatogr. A 2012, 1270, 96–103. DOI: 10.1016/j.chroma.2012.10.046.
  • Müller, K.; Seubert, A. Ultra Trace Determination of Fluorobenzoic Acids in Tap and Reservoir Water Using Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. J Chromatogr. A 2012, 1260, 9–15. DOI: 10.1016/j.chroma.2012.08.050.
  • Kubica, P.; Garraud, H.; Szpunar, J.; Lobinski, R. Sensitive Simultaneous Determination of 19 Fluorobenzoic Acids in Saline Waters by Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1417, 30–40. DOI: 10.1016/j.chroma.2015.09.024.
  • Engesser, K. H.; Schulte, P. Degradation of 2-Bromo-, 2-Chloro- and 2-Fluorobenzoate by Pseudomonas Putida CLB 250. FEMS Microbiol. Lett. 1989, 60, 143–147. DOI: 10.1111/j.1574-6968.1989.tb03434.x.
  • Zherikova, K. V.; Svetlov, A. A.; Kuratieva, N. V.; Verevkin, S. P. Structure–Property Relationships in Halogenbenzoic Acids: Thermodynamics of Sublimation, Fusion, Vaporization and Solubility. Chemosphere 2016, 161, 157–166. DOI: 10.1016/j.chemosphere.2016.06.111.
  • Gaza, S.; Felgner, A.; Otto, J.; Kushmaro, A.; Ben-Dov, E.; Tiehm, A. Biodegradation of Chloro- and Bromobenzoic Acids: Effect of Milieu Conditions and Microbial Community Analysis. J. Hazard Mater. 2015, 287, 24–31. DOI: 10.1016/j.jhazmat.2015.01.025.
  • Hickey, W. J.; Focht, D. D. Degradation of Mono-, Di-, and Trihalogenated Benzoic Acids by Pseudomonas Aeruginosa JB2. Appl. Environ. Microbiol. 1990, 56, 3842–3850. DOI: 10.1128/AEM.56.12.3842-3850.1990.
  • Zherikova, K. V.; Svetlov, A. A.; Varfolomeev, M. A.; Verevkin, S. P.; Held, C. Thermochemistry of Halogenobenzoic Acids as an Access to PC-SAFT Solubility Modeling. Fluid Phase Equilib. 2016, 409, 399–407. DOI: 10.1016/j.fluid.2015.10.001.
  • Reschke, T.; Zherikova, K. V.; Verevkin, S. P.; Held, C. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures with Water. J. Pharm. Sci. 2016, 105, 1050–1058. DOI: 10.1016/j.xphs.2015.12.020.
  • Křesinová, Z.; Muzikář, M.; Olšovská, J.; Cajthaml, T. Determination of 15 Isomers of Chlorobenzoic Acid in Soil Samples Using Accelerated Sample Extraction Followed by Liquid Chromatography. Talanta 2011, 84, 1141–1147. DOI: 10.1016/j.talanta.2011.03.013.
  • Kotel, L. Y.; Brichka, A. V.; Brichka, S. Y. Adsorption Properties of Modified Multilayer Carbon Nanotubes with Respect to Benzoic Acid. Russ. J. Appl. Chem. 2009, 82, 569–573. DOI: 10.1134/S1070427209040077.
  • Madadi Mahani, N.; Amiri, A.; Noroozmahani, N. A First Principle Study on the Adsorption of Benzoic Acid onto the (6, 6) and (5, 5) Armchair Single-Walled Carbon Nanotubes. Orient. J. Chem. 2017, 33, 1127–1132. DOI: 10.13005/ojc/330309.
  • Jagtap, P.; Gowda, P.; Das, B.; Kumar, P. Effect of Electro-Mechanical Coupling on Actuation Behavior of a Carbon Nanotube Cellular Structure. Carbon 2013, 60, 169–174. DOI: 10.1016/j.carbon.2013.04.010.
  • Špitalský, Z.; Aggelopoulos, C.; Tsoukleri, G.; Tsakiroglou, C.; Parthenios, J.; Georga, S.; Krontiras, C.; Tasis, D.; Papagelis, K.; Galiotis, C. The Effect of Oxidation Treatment on the Properties of Multi-Walled Carbon Nanotube Thin Films. Mater. Sci. Eng. B 2009, 165, 135–138. DOI: 10.1016/j.mseb.2009.09.019.
  • Saleh, T. A. The Influence of Treatment Temperature on the Acidity of MWCNT Oxidized by HNO3 or a Mixture of HNO3/H2SO4. Appl. Surf. Sci. 2011, 257, 7746–7751. DOI: 10.1016/j.apsusc.2011.04.020.
  • Akbaba, U. Effect of Different Acid Components on Multi-Walled Carbon Nanotubes. Hittite J. Sci. Eng. 2019, 6, 319–323. DOI: 10.17350/HJSE19030000164.
  • Saleh, T. A.; Elsharif, A. M.; Asiri, S.; Mohammed, A.-R. I.; Dafalla, H. Synthesis of Carbon Nanotubes Grafted with Copolymer of Acrylic Acid and Acrylamide for Phenol Removal. Environ. Nanotechnol. Monit. Manage. 2020, 14, 100302. DOI: 10.1016/j.enmm.2020.100302.
  • Kruusenberg, I.; Alexeyeva, N.; Tammeveski, K.; Kozlova, J.; Matisen, L.; Sammelselg, V.; Solla-Gullón, J.; Feliu, J. M. Effect of Purification of Carbon Nanotubes on Their Electrocatalytic Properties for Oxygen Reduction in Acid Solution. Carbon 2011, 49, 4031–4039. DOI: 10.1016/j.carbon.2011.05.048.
  • Shen, L.; Liu, M. A New Purification Way for Multiwalled Carbon Nanotubes. Appl. Mech. Mater. 2013, 457-458, 240–243. DOI: 10.4028/www.scientific.net/AMM.457-458.240.
  • Pillai, S. K.; Ray, S. S.; Moodley, M. Purification of Multi-Walled Carbon Nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 6187–6207. DOI: 10.1166/jnn.2008.345.
  • Yudianti, R. Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface. Open Mater. Sci. J. 2011, 5, 242–247. DOI: 10.2174/1874088X01105010242.
  • Yang, K.; Xing, B. Adsorption of Fulvic Acid by Carbon Nanotubes from Water. Environ. Poll. 2009, 157, 1095–1100. DOI: 10.1016/j.envpol.2008.11.007.
  • Liu, H. H.; Wang, N.; Hou, L. C.; Peng, W. W.; Jin, Y. M.; Zhang, X. X. 4-Substituted Benzoic Acids Functionalized Multi-Walled Carbon Nanotubes in Mild Polyphosphoric Acid/Phosphorous Pentoxide. Adv. Mater. Res. 2011, 217-218, 768–773. DOI: 10.4028/www.scientific.net/AMR.217-218.768.
  • Lee, P. Y.; Chen, C. Y. Toxicity and Quantitative Structure–Activity Relationships of Benzoic Acids to Pseudokirchneriella Subcapitata. J. Hazard. Mater. 2009, 165, 156–161. DOI: 10.1016/j.jhazmat.2008.09.086.
  • Muccini, M.; Layton, A. C.; Sayler, G. S.; Schultz, T. W. Aquatic Toxicities of Halogenated Benzoic Acids to Tetrahymena Pyriformis. Bull. Environ. Contam. Toxicol. 1999, 62, 616–622. 10.1007/s001289900919.
  • Zhao, Y. H.; Ji, G. D.; Cronin, M. T.; Dearden, J. C. QSAR Study of the Toxicity of Benzoic Acids to Vibrio Fischeri, Daphnia Magna and Carp. Sci. Total Environ. 1998, 216, 205–215. DOI: 10.1016/S0048-9697(98)00157-0.
  • FDA. Cosmetic Product Formulation and Frequency of Use Data. FDA Database. FDA: Washington, DC, 1984.
  • McCarthy, J. F.; Howard, K. M.; McKay, L. D. Effect of PH on Sorption and Transport of Fluorobenzoic Acid Ground Water Tracers. J. Environ. Qual. 2000, 29, 1806–1813. DOI: 10.2134/jeq2000.00472425002900060010x.
  • Jeon, J. W.; Son, Y. W.; Seo, B. I; Han, D. S. The Cytotoxic Effect of Benzoic Acid on Normal Human Skin Fibroblast. Korea J. Herbol. 2004, 19, 89–89.
  • Misra, A.; Tyagi, P. K.; Rai, P.; Misra, D. S. FTIR Spectroscopy of Multiwalled Carbon Nanotubes: A Simple Approach to Study the Nitrogen Doping. J. Nanosci. Nanotechnol. 2007, 7, 1820–1823. DOI: 10.1166/jnn.2007.723.
  • Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Bryce, D. L., Eds. Spectrometric Identification of Organic Compounds, 8th ed.; Wiley: Hoboken, NJ, 2015.
  • Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 3rd ed.; Brooks/Cole: South Melbourne, 2001.
  • Bellamy, L. J. The Infrared Spectra of Complex Molecules, 3rd ed., Aufl., Repr. Chapman and Hall: London, 1986; Vol. 1.
  • Thi Mai Hoa, L. Characterization of Multi-Walled Carbon Nanotubes Functionalized by a Mixture of HNO3/H2SO4. Diam. Relat. Mater. 2018, 89, 43–51. DOI: 10.1016/j.diamond.2018.08.008.
  • Akbaba, U.; Kasapoğlu, A. E.; Gür, E. Gamma and Neutron Irradiation Effects on Multi-Walled Carbon Nanotubes. Diam. Relat. Mater. 2018, 87, 242–247. DOI: 10.1016/j.diamond.2018.06.011.
  • Goldstein, J., Ed. Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis; Springer US: New York, 1975. DOI: 10.1007/978-1-4613-4422-3.
  • Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process). J. Phys. Chem. B 2001, 105, 8297–8301. DOI: 10.1021/jp0114891.
  • Li, S.; Li, Z.; Ke, B.; He, Z.; Cui, Y.; Pan, Z.; Li, D.; Huang, S.; Lai, C.; Su, J. Magnetic Multi-Walled Carbon Nanotubes Modified with Polyaluminium Chloride for Removal of Humic Acid from Aqueous Solution. J. Mol. Liq. 2019, 279, 241–250. DOI: 10.1016/j.molliq.2019.01.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.