242
Views
6
CrossRef citations to date
0
Altmetric
Articles

Enhanced microstructural characteristics of binary and ternary blended cements reinforced with graphene oxide

ORCID Icon &
Pages 987-1001 | Received 28 Jan 2022, Accepted 15 Mar 2022, Published online: 25 Mar 2022

References

  • Gupta, S.; Mohapatra, B. N.; Bansal, M. A Review on Development of Portland Limestone Cement: A Step towards Low Carbon Economy for Indian Cement Industry. Curr. Res. Green Sustain. Chem. 2020, 3, 100019. DOI: 10.1016/j.crgsc.2020.100019.
  • Alqahtani, F. K.; Rashid, K.; Zafar, I.; Iqbal Khan, M.; Ababtain, A. A. Production of Sustainable Green Mortar by Ultrahigh Utilization of Fly Ash: Technical, Economic and Environmental Assessment. Constr. Build. Mater. 2021, 281, 122617. DOI: 10.1016/j.conbuildmat.2021.122617.
  • Coppola, L.; Bellezze, T.; Belli, A.; Bignozzi, M. C.; Bolzoni, F.; Brenna, A.; Cabrini, M.; Candamano, S.; Cappai, M.; Caputo, D.; et al. Binders Alternative to Portland Cement and Waste Management for Sustainable construction-part 1. J. Appl. Biomater. Funct. Mater. 2018, 16, 186–202. DOI: 10.1177/2280800018782845.
  • Parashar, A.; Bishnoi, S. A Comparison of Test Methods to Assess the Strength Potential of Plain and Blended Supplementary Cementitious Materials. Constr. Build. Mater. 2020, 256, 119292. DOI: 10.1016/j.conbuildmat.2020.119292.
  • Chu, S. H.; Kwan, A. K. H. Co-Addition of Metakaolin and Silica Fume in Mortar: Effects and Advantages. Constr. Build. Mater. 2019, 197, 716–724. DOI: 10.1016/j.conbuildmat.2018.11.244.
  • Nwankwo, C. O.; Bamigboye, G. O.; Davies, I. E. E.; Michaels, T. A. High Volume Portland Cement Replacement: A Review. Constr. Build. Mater. 2020, 260, 120445. DOI: 10.1016/j.conbuildmat.2020.120445.
  • Yu, J.; Lu, C.; Leung, C. K. Y.; Li, G. Mechanical Properties of Green Structural Concrete with Ultrahigh-Volume Fly Ash. Constr. Build. Mater. 2017, 147, 510–518. DOI: 10.1016/j.conbuildmat.2017.04.188.
  • Atiş, C. D. High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage. J. Mater. Civ. Eng. 2003, 15, 153–156. DOI: 10.1061/(ASCE)0899-1561(2003)15:2(153).
  • Shaikh, F. U. A.; Supit, S. W. M. Compressive Strength and Durability Properties of High Volume Fly Ash (HVFA) Concretes Containing Ultrafine Fly Ash (UFFA). Constr. Build. Mater. 2015, 82, 192–205. DOI: 10.1016/j.conbuildmat.2015.02.068.
  • Chindaprasirt, P.; Kroehong, W.; Damrongwiriyanupap, N.; Suriyo, W.; Jaturapitakkul, C. Mechanical Properties, Chloride Resistance and Microstructure of Portland Fly Ash Cement Concrete Containing High Volume Bagasse Ash. J. Build. Eng. 2020, 31, 101415. DOI: 10.1016/j.jobe.2020.101415.
  • Promsawat, P.; Chatveera, B.; Sua-iam, G.; Makul, N. Properties of Self-Compacting Concrete Prepared with Ternary Portland Cement-High Volume Fly Ash-Calcium Carbonate Blends. Case Stud. Constr. Mater. 2020, 13, e00426. DOI: 10.1016/j.cscm.2020.e00426.
  • Yu, J.; Li, G.; Leung, C. K. Y. Hydration and Physical Characteristics of Ultrahigh-Volume Fly Ash-Cement Systems with Low Water/Binder Ratio. Constr. Build. Mater 2018, 161, 509–518. DOI: 10.1016/j.conbuildmat.2017.11.104.
  • Ransinchung R. N, G. D.; Kumar, B. Investigations on Pastes and Mortars of Ordinary Portland Cement Admixed with Wollastonite and Microsilica. J. Mater. Civ. Eng. 2010, 22, 305–313. DOI: 10.1061/(ASCE)MT.1943-5533.0000019.
  • Khan, M. I.; Siddique, R. Utilization of Silica Fume in Concrete: Review of Durability Properties. Resour. Conserv. Recycl. 2011, 57, 30–35. DOI: 10.1016/j.resconrec.2011.09.016.
  • Habib, A. O.; Aiad, I.; El-Hosiny, F. I.; Mohsen, A. Studying the Impact of Admixtures Chemical Structure on the Rheological Properties of Silica-Fume Blended Cement Pastes Using Various Rheological Models. Ain Shams Eng. J. 2021, 12, 1583–1594. DOI: 10.1016/j.asej.2020.12.009.
  • Mahmud, S.; Manzur, T.; Samrose, S.; Torsha, T. Significance of Properly Proportioned Fly Ash Based Blended Cement for Sustainable Concrete Structures of Tannery Industry. Structures 2021, 29, 1898–1910. DOI: 10.1016/j.istruc.2020.12.065.
  • De la Varga, I.; Castro, J.; Bentz, D. P.; Zunino, F.; Weiss, J. Evaluating the Hydration of High Volume Fly Ash Mixtures Using Chemically Inert Fillers. Constr. Build. Mater. 2018, 161, 221–228. DOI: 10.1016/j.conbuildmat.2017.11.132.
  • Wang, A.; Zhang, C.; Sun, W. Fly Ash Effects: I. The Morphological Effect of Fly Ash. Cem. Concr. Res. 2003, 33, 2023–2029. DOI: 10.1016/S0008-8846(03)00217-5.
  • Abdel-Gawwad, H. A.; Metwally, K. A.; Tawfik, T. A.; Mohammed, M. S.; Hassan, H. S.; Heikal, M.; El-Kattan, I. M. Evaluating the Performance of High Volume Fly Ash-Blended-Cement Mortar Individually Containing Nano- and Ultrafine Micro-Magnesia. J. Build. Eng. 2021, 36, 102129. DOI: 10.1016/j.jobe.2020.102129.
  • Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S. H.; Daimon, M. Hydration of Fly Ash Cement. Cem. Concr. Res 2005, 35, 1135–1140. DOI: 10.1016/j.cemconres.2004.09.008.
  • Siddique, S.; Kim, H.; Jang, J. G. Properties of High-Volume Slag Cement Mortar Incorporating Circulating Fluidized Bed Combustion Fly Ash and Bottom Ash. Constr. Build. Mater. 2021, 289, 123150. DOI: 10.1016/j.conbuildmat.2021.123150.
  • Lin, D. F.; Tsai, M. C. The Effects of Nanomaterials on Microstructures of Sludge Ash Cement Paste. J. Air Waste Manag. Assoc. 2006, 56, 1146–1154. DOI: 10.1080/10473289.2006.10464537.
  • Chintalapudi, K.; Pannem, R. M. R. An Intense Review on the Performance of Graphene Oxide and Reduced Graphene Oxide in an Admixed Cement System. Constr. Build. Mater. 2020, 259, 120598. DOI: 10.1016/j.conbuildmat.2020.120598.
  • Kafi, M. A.; Sadeghi-Nik, A.; Bahari, A.; Sadeghi-Nik, A.; Mirshafiei, E. Microstructural Characterization and Mechanical Properties of Cementitious Mortar Containing Montmorillonite Nanoparticles. J. Mater. Civ. Eng. 2016, 28, 04016155. DOI: 10.1061/(ASCE)MT.1943-5533.0001671.
  • Lv, S.; Ting, S.; Liu, J.; Zhou, Q. Use of Graphene Oxide Nanosheets to Regulate the Microstructure of Hardened Cement Paste to Increase Its Strength and Toughness. CrystEngComm 2014, 16, 8508–8516. DOI: 10.1039/C4CE00684D.
  • Lu, Z.; Li, X.; Hanif, A.; Chen, B.; Parthasarathy, P.; Yu, J.; Li, Z. Early-Age Interaction Mechanism between the Graphene Oxide and Cement Hydrates. Constr. Build. Mater. 2017, 152, 232–239. DOI: 10.1016/j.conbuildmat.2017.06.176.
  • Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W. H.; Li, Z. Effects of Graphene Oxide Aggregates on Hydration Degree, Sorptivity, and Tensile Splitting Strength of Cement Paste. Compos. Part A Appl. Sci. Manuf. 2017, 100, 1–8. DOI: 10.1016/j.compositesa.2017.05.002.
  • Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu, C.; Li, Z. Mechanism of Cement Paste Reinforced by Graphene Oxide/Carbon Nanotubes Composites with Enhanced Mechanical Properties. RSC Adv. 2015, 5, 100598–100605. DOI: 10.1039/C5RA18602A.
  • Li, X.; Korayem, A. H.; Li, C.; Liu, Y.; He, H.; Sanjayan, J. G.; Duan, W. H. Incorporation of Graphene Oxide and Silica Fume into Cement Paste: A Study of Dispersion and Compressive Strength. Constr. Build. Mater. 2016, 123, 327–335. DOI: 10.1016/j.conbuildmat.2016.07.022.
  • Chintalapudi, K.; Pannem, R. M. R. The Effects of Graphene Oxide Addition on Hydration Process, Crystal Shapes, and Microstructural Transformation of Ordinary Portland Cement. J. Build. Eng. 2020, 32, 101551. DOI: 10.1016/j.jobe.2020.101551.
  • Chintalapudi, K.; Pannem, R. M. R. Enhanced Strength, Microstructure, and Thermal Properties of Portland Pozzolana Fly Ash-Based Cement Composites by Reinforcing Graphene Oxide Nanosheets. J. Build. Eng. 2021, 42, 102521. DOI: 10.1016/j.jobe.2021.102521.
  • Standard I. IS 1489, 2019, 15.
  • ASTM. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annu. B. ASTM Stand 2010, 3–6. DOI: 10.1520/C0618-19.2.
  • ASTM C 1240/C 1240M–05. Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM Int. 2005, 1–7. DOI: 10.1520/C1240-20.2.
  • StandardI. DaØhV OsQ Fy, EksVs o Eghu Feykok — Fof ’ Kf " V Coarse and Fine Aggregate for Concrete — Specification. 2016, 19.
  • ASTM C494. Standard Specification for Chemical Admixtures for Concrete. ASTM Int. 2015, 1–10. DOI: 10.1520/C0494.
  • Bai, J.; Gailius, A. Consistency of Fly Ash and Metakaolin Concrete. J. Civ. Eng. Manag. 2009, 15, 131–135. DOI: 10.3846/1392-3730.2009.15.131-135.
  • Chiteka, K.; Enweremadu, C. Evaluation of a Concrete–Graphite Hybrid Mixture for Low-Cost Thermal Energy Storage Material. Cogent Eng. 2018, 5, 1538490–1538414. DOI: 10.1080/23311916.2018.1538490.
  • Kang, X.; Zhu, X.; Qian, J.; Liu, J.; Huang, Y. Effect of Graphene Oxide (GO) on Hydration of Tricalcium Silicate (C 3 S). Constr. Build. Mater. 2019, 203, 514–524. DOI: 10.1016/j.conbuildmat.2019.01.117.
  • Le Saoût, G.; Kocaba, V.; Scrivener, K. Application of the Rietveld Method to the Analysis of Anhydrous Cement. Cem. Concr. Res. 2011, 41, 133–148. DOI: 10.1016/j.cemconres.2010.10.003.
  • Ismail, I.; Bernal, S. A.; Provis, J. L.; Hamdan, S.; Van Deventer, J. S. J. Microstructural Changes in Alkali Activated Fly Ash/Slag Geopolymers with Sulfate Exposure. Mater. Struct. 2013, 46, 361–373. DOI: 10.1617/s11527-012-9906-2.
  • Emiru, T. F.; Ayele, D. W. Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production. Egypt. J. Basic Appl. Sci. 2017, 4, 74–79. DOI: 10.1016/j.ejbas.2016.11.002.
  • Kigozi, M.; Koech, R. K.; Kingsley, O.; Ojeaga, I.; Tebandeke, E.; Kasozi, G. N.; Onwualu, A. P. Synthesis and Characterization of Graphene Oxide from Locally Mined Graphite Flakes and Its Supercapacitor Applications. Results Mater. 2020, 7, 100113. DOI: 10.1016/j.rinma.2020.100113.
  • Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon N. Y. 2013, 64, 225–229. DOI: 10.1016/j.carbon.2013.07.055.
  • Guerrero-Contreras, J.; Caballero-Briones, F. Graphene Oxide Powders with Different Oxidation Degree, Prepared by Synthesis Variations of the Hummers Method. Mater. Chem. Phys. 2015, 153, 209–220. DOI: 10.1016/j.matchemphys.2015.01.005.
  • Tabikh, A. A.; Weht, R. J. An X-Ray Diffraction Analysis of Portland Cement. Cem. Concr. Res. 1971, 1, 317–328. DOI: 10.1016/0008-8846(71)90006-8.
  • Yajun, J.; Cahyadi, J. H. Effects of Densified Silica Fume on Microstructure and Compressive Strength of Blended Cement Pastes. Cem. Concr. Res. 2003, 33, 1543–1548. DOI: 10.1016/S0008-8846(03)00100-5.
  • Kaur, R.; Kothiyal, N. C. Synergic Influence of Fly Ash and Graphene Oxide-Carbon Nanotubes Hybrid on Mechanical, Microstructural and Porosity Properties of Cement Mortars. J. Adhes. Sci. Technol. 2020, 35, 1–29. DOI: 10.1080/01694243.2020.1860548.
  • Hakamy, A. Influence of SiO 2 Nanoparticles on the Microstructure, Mechanical Properties, and Thermal Stability of Portland Cement Nanocomposites. J. Taibah Univ. Sci. 2021, 15, 909–917. DOI: 10.1080/16583655.2021.2011594.
  • Malikov, E. Y. The Effect of Polyvinyl Alcohol Functionalized Multiwall Carbon Nanotubes on the Improvement of the Compressive Strength of Concrete the Improvement of the Compressive Strength of Concrete. Fullerenes, Nanotub. Carbon Nanostructures 2020, 0, 1–5. DOI: 10.1080/1536383X.2020.1759557.
  • Hakamy, A. Effect of CaCO 3 Nanoparticles on the Microstructure and Fracture Toughness of Ceramic Nanocomposites. J. Taibah Univ. Sci. 2020, 14, 1201–1207. DOI: 10.1080/16583655.2020.1809840.
  • Merodio-Perea, R.; Páez-Pavón, A.; Lado-Touriño, I. . Reinforcing Cement with Pristine and Functionalized Carbon Nanotubes : Experimental and Simulation Studies. Int. J. Smart Nano Mater. 2020, 11, 370–386. DOI: 10.1080/19475411.2020.1838966.
  • Liu, X.; Jiang, B.; Liao, G.; Zuo, J.; Xu, J.; Shah, S. P. Research on the Smart Behavior of MCNT Grafted CF/Cement-Based Composites. Fullerenes, Nanotub. Carbon Nanostructures 2021, 0, 1–8. DOI: 10.1080/1536383X.2021.1910239.
  • Horgnies, M.; Chen, J. J.; Bouillon, C. Overview about the Use of Fourier Transform Infrared Spectroscopy to Study Cementitious Materials. WIT Trans. Eng. Sci. 2013, 77, 251–262. DOI: 10.2495/MC130221.
  • Hughes, T. L.; Methven, C. M.; Jones, T. G. J.; Pelham, S. E.; Fletcher, P.; Hall, C. Determining Cement Composition by Fourier Transform Infrared Spectroscopy. Adv. Cem. Based Mater. 1995, 2, 91–104. DOI: 10.1016/1065-7355(94)00031-X.
  • Kapeluszna, E.; Kotwica, Ł.; Różycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H Gels with Various Ca/Si and Al/Si Ratio: Microstructural and Structural Characteristics with DTA/TG, XRD, FTIR and TEM Analysis. Constr. Build. Mater. 2017, 155, 643–653. DOI: 10.1016/j.conbuildmat.2017.08.091.
  • Ghosh, S. N.; Handoo, S. K. Infrared and Raman Spectral Studies in Cement and Concrete (Review). Cem. Concr. Res. 1980, 10, 771–782. DOI: 10.1016/0008-8846(80)90005-8.
  • Lin, C.; Wei, W.; Hu, Y. H. Catalytic Behavior of Graphene Oxide for Cement Hydration Process. J. Phys. Chem. Solids 2016, 89, 128–133. DOI: 10.1016/j.jpcs.2015.11.002.
  • Ylmén, R.; Jäglid, U.; Steenari, B. M.; Panas, I. Early Hydration and Setting of Portland Cement Monitored by IR, SEM and Vicat Techniques. Cem. Concr. Res. 2009, 39, 433–439. DOI: 10.1016/j.cemconres.2009.01.017.
  • Kupwade-Patil, K.; Palkovic, S. D.; Bumajdad, A.; Soriano, C.; Büyüköztürk, O. Use of Silica Fume and Natural Volcanic Ash as a Replacement to Portland Cement: Micro and Pore Structural Investigation Using NMR, XRD, FTIR and X-Ray Microtomography. Constr. Build. Mater. 2018, 158, 574–590. DOI: 10.1016/j.conbuildmat.2017.09.165.
  • Wei, Y.; Yao, W.; Xing, X.; Wu, M. Quantitative Evaluation of Hydrated Cement Modified by Silica Fume Using QXRD, 27Al MAS NMR, TG-DSC and Selective Dissolution Techniques. Constr. Build. Mater. 2012, 36, 925–932. DOI: 10.1016/j.conbuildmat.2012.06.075.
  • Mei, J.; Ma, B.; Tan, H.; Li, H.; Liu, X.; Jiang, W.; Zhang, T.; Guo, Y. Influence of Steam Curing and Nano Silica on Hydration and Microstructure Characteristics of High Volume Fly Ash Cement System. Constr. Build. Mater. 2018, 171, 83–95. DOI: 10.1016/j.conbuildmat.2018.03.056.
  • Ni, C.; Wu, Q.; Yu, Z.; Shen, X. Hydration of Portland Cement Paste Mixed with Densified Silica Fume: From the Point of View of Fineness. Constr. Build. Mater. 2021, 272, 121906. DOI: 10.1016/j.conbuildmat.2020.121906.
  • Seo, J.; Park, S.; Yoon, H. N.; Lee, H. K. Effect of CaO Incorporation on the Microstructure and Autogenous Shrinkage of Ternary Blend Portland Cement-Slag-Silica Fume. Constr. Build. Mater. 2020, 249, 118691. DOI: 10.1016/j.conbuildmat.2020.118691.
  • Thymotie, A.; Chang, T. P.; Nguyen, H. A. Improving Properties of High-Volume Fly Ash Cement Paste Blended with β-Hemihydrate from Flue Gas Desulfurization Gypsum. Constr. Build. Mater. 2020, 261, 120494. DOI: 10.1016/j.conbuildmat.2020.120494.
  • Zhao, Y.; Gao, J.; Xu, Z.; Li, S.; Luo, X.; Chen, G. Long-Term Hydration and Microstructure Evolution of Blended Cement Containing Ground Granulated Blast Furnace Slag and Waste Clay Brick. Cem. Concr. Compos. 2021, 118, 103982. DOI: 10.1016/j.cemconcomp.2021.103982.
  • Bhagath Singh, G. V. P.; Subramaniam, K. V. L. Quantitative XRD Analysis of Binary Blends of Siliceous Fly Ash and Hydrated Cement. J. Mater. Civ. Eng. 2016, 28, 04016042. DOI: 10.1061/(ASCE)MT.1943-5533.0001554.
  • Byfors, K. Influence of Silica Fume and Flyash on Chloride Diffusion. Cem. Concr. Res. 1987, 17, 115–130. DOI: 10.1016/0008-8846(87)90066-4.
  • Siang Ng, D.; Paul, S. C.; Anggraini, V.; Kong, S. Y.; Qureshi, T. S.; Rodriguez, C. R.; Liu, Q.; feng; Šavija, B. Influence of SiO2, TiO2 and Fe2O3 Nanoparticles on the Properties of Fly Ash Blended Cement Mortars. Constr. Build. Mater. 2020, 258, 119627. DOI: 10.1016/j.conbuildmat.2020.119627.
  • Kosior-Kazberuk, M.; Lelusz, M. Strength Development of Concrete with Fly Ash Addition. J. Civ. Eng. Manag. 2007, 13, 115–122. DOI: 10.3846/13923730.2007.9636427.
  • Fajun, W.; Grutzeck, M. W.; Roy, D. M. The Retarding Effects of Fly Ash upon the Hydration of Cement Pastes: The First 24 Hours. Cem. Concr. Res. 1985, 15, 174–184. DOI: 10.1016/0008-8846(85)90024-9.
  • Zhao, H.; Qin, X.; Liu, J.; Zhou, L.; Tian, Q.; Wang, P. Pore Structure Characterization of Early-Age Cement Pastes Blended with High-Volume Fly Ash. Constr. Build. Mater. 2018, 189, 934–946. DOI: 10.1016/j.conbuildmat.2018.09.023.
  • Du, S.; Jiang, Y.; Zhong, J.; Ge, Y.; Shi, X. Surface Abrasion Resistance of High-Volume Fly Ash Concrete Modified by Graphene Oxide: Macro- and Micro-Perspectives. Constr. Build. Mater. 2020, 237, 117686. DOI: 10.1016/j.conbuildmat.2019.117686.
  • Lu, Z.; Hou, D.; Hanif, A.; Hao, W.; Sun, G.; Li, Z. Comparative Evaluation on the Dispersion and Stability of Graphene Oxide in Water and Cement Pore Solution by Incorporating Silica Fume. Cem. Concr. Compos. 2018, 94, 33–42. DOI: 10.1016/j.cemconcomp.2018.08.011.
  • Hazem, M. M.; Hashem, F. S.; El-Gamal, S. M. A.; Amin, M. S. Mechanical and Microstructure Characteristics Development of Hardened Oil Well Cement Pastes Incorporating Fly Ash and Silica Fume at Elevated Temperatures. J. Taibah Univ. Sci. 2020, 14, 155–167. DOI: 10.1080/16583655.2020.1711998.
  • Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Liggat, J. Enhanced Properties of Graphene/Fly Ash Geopolymeric Composite Cement. Cem. Concr. Res. 2015, 67, 292–299. DOI: 10.1016/j.cemconres.2014.08.011.
  • Nili, M.; Ehsani, A. Investigating the Effect of the Cement Paste and Transition Zone on Strength Development of Concrete Containing Nanosilica and Silica Fume. Mater. Des. 2015, 75, 174–183. DOI: 10.1016/j.matdes.2015.03.024.
  • Huang, Q.; Zhu, X.; Liu, D.; Zhao, L.; Zhao, M. Modification of Water Absorption and Pore Structure of High-Volume Fly Ash Cement Pastes by Incorporating Nanosilica. J. Build. Eng. 2021, 33, 101638. DOI: 10.1016/j.jobe.2020.101638.
  • Yu, J.; Zhang, M.; Li, G.; Meng, J.; Leung, C. K. Y. Using Nano-Silica to Improve Mechanical and Fracture Properties of Fiber-Reinforced High-Volume Fly Ash Cement Mortar. Constr. Build. Mater. 2020, 239, 117853. DOI: 10.1016/j.conbuildmat.2019.117853.
  • Yang, J.; Hu, H.; He, X.; Su, Y.; Wang, Y.; Tan, H.; Pan, H. Effect of Steam Curing on Compressive Strength and Microstructure of High Volume Ultrafine Fly Ash Cement Mortar. Constr. Build. Mater. 2021, 266, 120894. DOI: 10.1016/j.conbuildmat.2020.120894.
  • Zhou, Q.; Lachowski, E. E.; Glasser, F. P. Metaettringite, a Decomposition Product of Ettringite. Cem. Concr. Res. 2004, 34, 703–710. DOI: 10.1016/j.cemconres.2003.10.027.
  • Thongsanitgarn, P.; Wongkeo, W.; Chaipanich, A. Hydration and Compressive Strength of Blended Cement Containing Fly Ash and Limestone as Cement Replacement. J. Mater. Civ. Eng. 2014, 26, 04014088. DOI: 10.1061/(ASCE)MT.1943-5533.0001002.
  • Khalil, E. A. B.; Anwar, M. Carbonation of Ternary Cementitious Concrete Systems Containing Fly Ash and Silica Fume. Water Sci. 2015, 29, 36–44. DOI: 10.1016/j.wsj.2014.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.