196
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of graphene oxide on the microstructure and hydration characteristics of ultrafine slag cement composites

&
Pages 1054-1065 | Received 07 Mar 2022, Accepted 18 Apr 2022, Published online: 02 May 2022

References

  • Kumar Gupta, A. Experimental Study of Strength Relationship of Concrete Cube and Concrete Cylinder Using Ultrafine Slag Alccofine. Int. J. Sci. Eng. Res. 2014, 5, 102–107.
  • Thangapandi, K.; Anuradha, R.; Archana, N.; Muthuraman, P.; Awoyera Paul, O.; Gobinath, R. Experimental Study on Performance of Hardened Concrete Using Nano Materials. KSCE J Civ Eng. 2020, 24, 596–602. DOI: 10.1007/s12205-020-0871-y.
  • Kavyateja, B. V.; Guru Jawahar, J.; Sashidhar, C. Effectiveness of Alccofine and Fly Ash on Mechanical Properties of Ternary Blended Self Compacting Concrete. Mater. Today Proc. 2020, 33, 73–79. DOI: 10.1016/j.matpr.2020.03.152.
  • Mohan, A.; Mini, K. M. Strength Studies of SCC Incorporating Silica Fume and Ultra Fine GGBS. Mater. Today Proc. 2018, 5, 23752–23758. DOI: 10.1016/j.matpr.2018.10.166.
  • Jindal, B. B.; Jangra, P.; Garg, A. Effects of Ultra Fine Slag as Mineral Admixture on the Compressive Strength, Water Absorption and Permeability of Rice Husk Ash Based Geopolymer Concrete. Mater. Today Proc. 2020, 32, 871–877. DOI: 10.1016/j.matpr.2020.04.219.
  • Konsta-Gdoutos, M. S.; Metaxa, Z. S.; Shah, S. P. Multi-Scale Mechanical and Fracture Characteristics and Early-Age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. DOI: 10.1016/j.cemconcomp.2009.10.007.
  • Wang, Q.; Wang, J.; Lv, C-x.; Cui, X-y.; Li, S-y.; Wang, X. Rheological Behavior of Fresh Cement Pastes with a Graphene Oxide Additive. Xinxing Tan Cailiao/New Carbon Mater. 2016, 31, 574–584. DOI: 10.1016/S1872-5805(16)60033-1.
  • Lu, L.; Zhao, P.; Lu, Z. A Short Discussion on How to Effectively Use Graphene Oxide to Reinforce Cementitious Composites. Constr. Build. Mater. 2018, 189, 33–41. DOI: 10.1016/j.conbuildmat.2018.08.170.
  • Wang, Q.; Wang, J.; Lu, C. X.; Liu, B. W.; Zhang, K.; Li, C. Z. Influence of Graphene Oxide Additions on the Microstructure and Mechanical Strength of Cement. Xinxing Tan Cailiao/New Carbon Mater. 2015, 30, 349–356. DOI: 10.1016/S1872-5805(15)60194-9.
  • Yang, H.; Monasterio, M.; Cui, H.; Han, N. Experimental Study of the Effects of Graphene Oxide on Microstructure and Properties of Cement Paste Composite. Compos. Part A Appl. Sci. Manuf. 2017, 102, 263–272. DOI: 10.1016/j.compositesa.2017.07.022.
  • Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W. H.; Li, Z. Effects of Graphene Oxide Aggregates on Hydration Degree, Sorptivity, and Tensile Splitting Strength of Cement Paste. Compos. Part A Appl. Sci. Manuf. 2017, 100, 1–8. DOI: 10.1016/j.compositesa.2017.05.002.
  • Sagar, B.; M.V.N, S. Mechanical and Microstructure Characterization of Alccofine Based High Strength Concrete. Silicon 2022, 14, 795–813. DOI: 10.1007/s12633-020-00863-x.
  • Sagar, B.; Sivakumar, M. V. N. An Experimental and Analytical Study on Alccofine Based High Strength Concrete. Int. J. Eng. Trans. A Basics 2020, 33, 530–538. DOI: 10.5829/IJE.2020.33.04A.03.
  • Gautham Kishore Reddy, G.; Ramadoss, P. 2020 Influence of Alccofine Incorporation on the Mechanical Behavior of Ultrahigh Performance Concrete (UHPC). In Materials Today: Proceedings; Elsevier Ltd, Vol. 33, pp 789–797. DOI: 10.1016/j.matpr.2020.06.180.
  • Reddy, P. N.; Kavyateja, B. V. 2020 Durability Performance of High Strength Concrete Incorporating Supplementary Cementitious Materials. In Materials Today: Proceedings; Elsevier Ltd; Vol. 33, pp. 66–72. DOI: 10.1016/j.matpr.2020.03.149.
  • Thangapandi, K.; Anuradha, R.; Awoyera, P. O.; Gobinath, R.; Archana, N.; Berlin, M.; Oladimeji, O. B. Durability Phenomenon in Manufactured Sand Concrete: Effects of Zinc Oxide and Alcofine on Behaviour. Silicon 2021, 13, 1079–1085. DOI: 10.1007/s12633-020-00494-2.
  • Zaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S. J.; Liu, W. W.; Voon, C. H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. DOI: 10.1016/j.proeng.2017.04.118.
  • Jumate, E.; Manea, D. L. Application of X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) Methods to the Portland Cement Hydration Processes. J. Appl. Eng. Sci. 2012, 2, 35–42.
  • Du, S.; Tang, Z.; Zhong, J.; Ge, Y.; Shi, X. Effect of Admixing Graphene Oxide on Abrasion Resistance of Ordinary Portland Cement Concrete. AIP Adv. 2019, 9, DOI: 10.1063/1.5124388.
  • Chintalapudi, K.; Pannem, R. M. R. The Effects of Graphene Oxide Addition on Hydration Process, Crystal Shapes, and Microstructural Transformation of Ordinary Portland Cement. J. Build. Eng. 2020, 32, 101551. DOI: 10.1016/j.jobe.2020.101551.
  • Ghazanlou, S. I.; Ghazanlou, S. I.; Ashraf, W. Improvement in the Physical and Mechanical Properties of the Cement-Based Composite with the Addition of Nanostructured BN–Fe3O4 Reinforcement. Sci. Rep. 2021, 11, 1–13. DOI: 10.1038/s41598-021-98800-4.
  • Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The Use of Thermal Analysis in Assessing the Effect of Temperature on a Cement Paste. Cem. Concr. Res. 2005, 35, 609–613. DOI: 10.1016/j.cemconres.2004.06.015.
  • Bergold, S. T.; Goetz-Neunhoeffer, F.; Neubauer, J. Quantitative Analysis of C-S-H in Hydrating Alite Pastes by in-Situ XRD. Cem. Concr. Res. 2013, 53, 119–126. DOI: 10.1016/j.cemconres.2013.06.001.
  • Yaseen, S. A.; Yiseen, G. A.; Li, Z. Synthesis of Calcium Carbonate in Alkali Solution Based on Graphene Oxide and Reduced Graphene Oxide. J. Solid State Chem. 2018, 262, 127–134. DOI: 10.1016/j.jssc.2018.03.005.
  • Saxena, S. K.; Kumar, M.; Singh, N. B. Effect of Alccofine Powder on the Properties of Pond Fly Ash Based Geopolymer Mortar under Different Conditions. Environ. Technol. Innov. 2018, 9, 232–242. DOI: 10.1016/j.eti.2017.12.010.
  • Pan, Z.; He, L.; Qiu, L.; Korayem, A. H.; Li, G.; Zhu, J. W.; Collins, F.; Li, D.; Duan, W. H.; Wang, M. C. Mechanical Properties and Microstructure of a Graphene Oxide-Cement Composite. Cem. Concr. Compos. 2015, 58, 140–147. DOI: 10.1016/j.cemconcomp.2015.02.001.
  • Peng, H.; Ge, Y.; Cai, C. S.; Zhang, Y.; Liu, Z. Mechanical Properties and Microstructure of Graphene Oxide Cement-Based Composites. Constr. Build. Mater. 2019, 194, 102–109. DOI: 10.1016/j.conbuildmat.2018.10.234.
  • Wang, Q.; Li, S.; Pan, S.; Cui, X.; Corr, D. J.; Shah, S. P. Effect of Graphene Oxide on the Hydration and Microstructure of Fly Ash-Cement System. Constr. Build. Mater. 2019, 198, 106–119. DOI: 10.1016/j.conbuildmat.2018.11.199.
  • Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. Effect of Graphene Oxide Nanosheets of Microstructure and Mechanical Properties of Cement Composites. Constr. Build. Mater. 2013, 49, 121–127. DOI: 10.1016/j.conbuildmat.2013.08.022.
  • Sharma, S.; Arora, S. Economical Graphene Reinforced Fly Ash Cement Composite Made with Recycled Aggregates for Improved Sulphate Resistance and Mechanical Performance. Constr. Build. Mater. 2018, 162, 608–612. DOI: 10.1016/j.conbuildmat.2017.12.027.
  • Beigi, M. H.; Berenjian, J.; Lotfi Omran, O.; Sadeghi Nik, A.; Nikbin, I. M. An Experimental Survey on Combined Effects of Fibers and Nanosilica on the Mechanical, Rheological, and Durability Properties of Self-Compacting Concrete. Mater. Des. 2013, 50, 1019–1029. DOI: 10.1016/j.matdes.2013.03.046.
  • Kontoyannis, C. G.; Vagenas, N. V. Calcium Carbonate Phase Analysis Using XRD and FT-Raman Spectroscopy. Analyst 2000, 125, 251–255. DOI: 10.1039/a908609i.
  • Sedaghat, A.; Ram, M. K.; Zayed, A.; Kamal, R.; Shanahan, N. Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications. OJCM 2014, 04, 12–21. DOI: 10.4236/ojcm.2014.41002.
  • Li, G.; Zhang, L. W. Microstructure and Phase Transformation of Graphene-Cement Composites under High Temperature. Compos. Part B Eng. 2019, 166, 86–94. DOI: 10.1016/j.compositesb.2018.11.127.
  • Wang, L.; Li, Q.; Song, J.; Liu, S. Effect of Graphene Oxide on Early Hydration and Compressive Strength of Portland Cement-Copper Tailing Powder Composite Binder. Powder Technol. 2021, 386, 428–436. DOI: 10.1016/j.powtec.2021.04.006.
  • Wang, L.; Zhang, S.; Zheng, D.; Yang, H.; Cui, H.; Tang, W.; Li, D. Effect of Graphene Oxide (GO) on the Morphology and Microstructure of Cement Hydration Products. Nanomaterials 2017, 7, 429. DOI: 10.3390/nano7120429.
  • Yaseen, S. A.; Yiseen, G. A.; Li, Z. Elucidation of Calcite Structure of Calcium Carbonate Formation Based on Hydrated Cement Mixed with Graphene Oxide and Reduced Graphene Oxide. ACS Omega 2019, 4, 10160–10170. DOI: 10.1021/acsomega.9b00042.
  • Ylmén, R.; Jäglid, U. Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy. Int. J. Concr. Struct. Mater. 2013, 7, 119–125. DOI: 10.1007/s40069-013-0039-y.
  • Serp, P.; Machado, B. Carbon (Nano) Materials for Catalyst;2015.
  • Horgnies, M.; Chen, J. J.; Bouillon, C. Overview about the Use of Fourier Transform Infrared Spectroscopy to Study Cementitious Materials. WIT Trans. Eng. Sci. 2013, 77, 251–262. DOI: 10.2495/MC130221.
  • Stutzman, P. E.; Feng, P.; Bullard, J. W. Phase Analysis of Portland Cement by Combined Quantitative X-Ray Powder Diffraction and Scanning Electron Microscopy. J Res Natl Inst Stand Technol. 2016, 121, 47–107. DOI: 10.6028/jres.121.004.[34434615
  • Muthu, M.; Santhanam, M. Effect of Reduced Graphene Oxide, Alumina and Silica Nanoparticles on the Deterioration Characteristics of Portland Cement Paste Exposed to Acidic Environment. Cem. Concr. Compos. 2018, 91, 118–137. DOI: 10.1016/j.cemconcomp.2018.05.005.
  • Escalante-Garcia, J. I. Nonevaporable Water from Neat OPC and Replacement Materials in Composite Cements Hydrated at Different Temperatures. Cem. Concr. Res. 2003, 33, 1883–1888. DOI: 10.1016/S0008-8846(03)00208-4.
  • Chougan, M.; Lamastra, F. R.; Bolli, E.; Caschera, D.; Kaciulis, S.; Mazzuca, C.; Montesperelli, G.; Ghaffar, S. H.; Al-Kheetan, M. J.; Bianco, A. Extra-Low Dosage Graphene Oxide Cementitious Nanocomposites: A Nano-to Macroscale Approach. Nanomaterials 2021, 11, 3220–3278. DOI: 10.3390/nano11123278.
  • Chiranjiakumari Devi, S.; Ahmad Khan, R. Influence of Graphene Oxide on Sulfate Attack and Carbonation of Concrete Containing Recycled Concrete Aggregate. Constr. Build. Mater. 2020, 250, 118883. DOI: 10.1016/j.conbuildmat.2020.118883.
  • Kong, X.; Emmerling, S.; Pakusch, J.; Rueckel, M.; Nieberle, J. Retardation Effect of Styrene-Acrylate Copolymer Latexes on Cement Hydration. Cem. Concr. Res. 2015, 75, 23–41. DOI: 10.1016/j.cemconres.2015.04.014.
  • Li, X.; Wang, L.; Liu, Y.; Li, W.; Dong, B.; Duan, W. H. Dispersion of Graphene Oxide Agglomerates in Cement Paste and Its Effects on Electrical Resistivity and Flexural Strength. Cem. Concr. Compos. 2018, 92, 145–154. DOI: 10.1016/j.cemconcomp.2018.06.008.
  • Wei, Y.; Miao, Z.; Jia, Z.; Wang, Y.; Zhou, Y.; Zhang, H.; Wei, J. Synergy of Reduced Graphene Oxide and Metal Oxides Improves the Power Factor of Thermoelectric Cement Matrix Composites. Fullerenes, Nanotub. Carbon Nanostruct. 2022, 1–13. DOI: 10.1080/1536383X.2021.2024167.
  • He, W.; Liao, G. Effects of Nano-C-S-H Seed Crystal on Early-Age Hydration Process of Portland Cement. Fullerenes, Nanotub. Carbon Nanostruct. 2021, 1–8. DOI: 10.1080/1536383X.2021.1940969.
  • Malikov, E. Y. The Effect of Polyvinyl Alcohol Functionalized Multiwall Carbon Nanotubes on the Improvement of the Compressive Strength of Concrete. Fullerenes, Nanotub. Carbon Nanostruct. 2020, 28, 781–785. DOI: 10.1080/1536383X.2020.1759557.
  • Gong, K.; Pan, Z.; Korayem, A. H.; Qiu, L.; Li, D.; Collins, F.; Wang, C. M.; Duan, W. H. Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 2015, 27, 1–6. DOI: 10.1061/(ASCE)MT.1943-5533.0001125.
  • Chintalapudi, K.; Mohan, R.; Pannem, R. Enhanced Microstructural Characteristics of Binary and Ternary Blended Cements Reinforced with Graphene Oxide. Fullerenes, Nanotub. Carbon Nanostruct. 2022, 0, 1–15. DOI: 10.1080/1536383X.2022.2054992.
  • Zhang, X.; Luo, Y.; Yao, W. Effects of Dolomite Powder on the Properties of C30 and C50 Concretes. Fullerenes, Nanotub. Carbon Nanostruct. 2022, 0, 1–10. DOI: 10.1080/1536383X.2022.2035363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.