206
Views
2
CrossRef citations to date
0
Altmetric
Articles

A novel fluorescent carbon nanoparticles for detection of dipicolinic acid

, , & ORCID Icon
Pages 1097-1101 | Received 08 Apr 2022, Accepted 26 Apr 2022, Published online: 05 May 2022

References

  • Zhang, Y.; Li, B.; Ma, H.; Zhang, L.; Jiang, H.; Song, H.; Zhang, L.; Luo, Y. A Nanoscaled Lanthanide Metal-Organic Framework as a Colorimetric Fluorescence Sensor for Dipicolinic Acid Based on Modulating Energy Transfer. J. Mater. Chem. C 2016, 4, 7294–7301. DOI: 10.1039/C6TC01022A.
  • Zou, J.; Peng, Y. G.; Tang, Y. Y. A Facile bi-Phase Synthesis of Fe3O4@SiO2 Core-Shell Nanoparticles with Tunable Film Thicknesses. RSC Adv. 2014, 4, 9693–9700. DOI: 10.1039/c3ra47043a.
  • Cable, M. L.; Kirby, J. P.; Sorasaenee, K.; Gray, H. B.; Ponce, A. Bacterial Spore Detection by [Tb3+(Macrocycle)(Dipicolinate)] Luminescence. J. Am. Chem. Soc. 2007, 129, 1474–1475. DOI: 10.1021/ja061831t.
  • Baig, M.; Chen, Y. C. Gold Nanoparticle-Based Colorimetric Sensing of Dipicolinic Acid from Complex Samples. Anal. Bioanal. Chem. 2018, 410, 1805–1815. DOI: 10.1007/s00216-017-0836-2.
  • Cowcher, D. P.; Xu, Y.; Goodacre, R. Portable, Quantitative Detection of Bacillus Bacterial Spores Using Surface-Enhanced Raman Scattering. Anal. Chem. 2013, 85, 3297–3302. DOI: 10.1021/ac303657k.
  • Fichtel, J.; Köster, J.; Scholz-Böttcher, B.; Sass, H.; Rullkötter, J. A Highly Sensitive HPLC Method for Determination of Nanomolar Concentrations of Dipicolinic Acid, a Characteristic Constituent of Bacterial Endospores. J. Microbiol. Methods 2007, 70, 319–327. DOI: 10.1016/j.mimet.2007.05.008.7.
  • Basile, F.; Zhang, S.; Shin, Y. S.; Drolet, B. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus spores. Analyst 2010, 135, 797–803. DOI: 10.1039/c0an00071j.
  • Yan, F.; Fan, K.; Bai, Z.; Zhang, R.; Zu, F.; Xu, J.; Li, X. Fluorescein Applications as Fluorescent Probes for the Detection of Analytes. TrAC, Trends. Anal. Chem. 2017, 97, 120–135. DOI: 10.1016/j.trac.2017.08.013.
  • Aydin, Z. Y.; Yan, B.; Wei, Y. B.; Guo, M. L. A Novel near-Infrared Turn-on and Ratiometric Fluorescent Probe Capable of Copper(II) Ion Determination in Living Cells. Chem. Commun. (Camb). 2020, 56, 6043–6046. DOI: 10.1039/d0cc01481h.
  • Zou, C.; Foda, M. F.; Tan, X.; Shao, K.; Wu, L.; Lu, Z.; Bahlol, H. S.; Han, H. Carbon-Dot and Quantum-Dot-Coated Dual-Emission Core-Satellite Silica Nanoparticles for Ratiometric Intracellular Cu(2+) Imaging. Anal. Chem. 2016, 88, 7395–7403. DOI: 10.1021/acs.analchem.6b01941.
  • Wang, Y.; Zhang, C.; Chen, X.; Yang, B.; Yang, L.; Jiang, C.; Zhang, Z. Ratiometric Fluorescent Paper Sensor Utilizing Hybrid Carbon Dots-Quantum Dots for the Visual Determination of Copper Ions. Nanoscale 2016, 8, 5977–5984. DOI: 10.1039/c6nr00430j.
  • Chung, L.; Rajan, K. S.; Merdinger, E.; Grecz, N. Coordinative Binding of Divalent Cations with Ligands Related to Bacterial Spores. Biophys. J. 1971, 11, 469–482. DOI: 10.1016/S0006-3495(71)86229-X.
  • Zhao, Y.; Xu, Y.; Shi, L.; Fan, Y. Perovskite Nanomaterial-Engineered Multiplex-Mode Fluorescence Sensing of Edible Oil Quality. Anal. Chem. 2021, 93, 11033–11042. DOI: 10.1021/acs.analchem.1c02425.
  • Zeng, X.; Chen, W.; Liu, C.; Yin, J.; Yang, G. F. Fluorescence Probes for Reactive Sulfur Species in Agricultural Chemistry. J. Agric. Food Chem. 2021, 69, 13700–13712. DOI: 10.1021/acs.jafc.1c05249.
  • Yasuda, T.; Inoue, A.; Kitaguchi, T.; Ueda, H. Rapid Construction of Fluorescence Quenching-Based Immunosensor Q-Bodies Using α-Helical Coiled-Coil Peptides. Chem. Commun. (Camb). 2021, 57, 8206–8209. DOI: 10.1039/d1cc02605d.
  • Han, H. H.; Tian, H.; Zang, Y.; Sedgwick, A. C.; Li, J.; Sessler, J. L.; He, X. P.; James, T. D. Small-Molecule Fluorescence-Based Probes for Interrogating Major Organ Diseases. Chem. Soc. Rev. 2021, 50, 9391–9429. DOI: 10.1039/d0cs01183e.
  • Wareing, T. C.; Gentile, P.; Phan, A. N. Biomass-Based Carbon Dots: current Development and Future Perspectives. ACS Nano. 2021, 15, 15471–15501. DOI: 10.1021/acsnano.1c03886.
  • Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials (Basel) 2021, 11, 1448. DOI: 10.3390/nano11061448.
  • Gao, M.; He, M.; Xing, R.; Wang, X.; Wang, Z. Borate-Modified Carbon Dots as a Probe for Quercetin in Plants. Analyst 2021, 146, 590–596. DOI: 10.1039/d0an01898h.
  • Yang, X.; Guo, Y.; Liang, S.; Hou, S.; Chu, T.; Ma, J.; Chen, X.; Zhou, J.; Sun, R. Preparation of Sulfur-Doped Carbon Quantum Dots from Lignin as a Sensor to Detect Sudan I in an Acidic Environment. J. Mater. Chem. B 2020, 8, 10788–10796. DOI: 10.1039/d0tb00125b.
  • He, Q.; Zhuang, S.; Yu, Y.; Li, H.; Liu, Y. Ratiometric Dual-Emission of Rhodamine-B Grafted Carbon Dots for Full-Range Solvent Components Detection. Anal. Chim. Acta 2021, 1174, 338743. DOI: 10.1016/j.aca.2021.338743.
  • Dhenadhayalan, N.; Lin, K. C.; Saleh, T. A. Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications. Small 2020, 16, e1905767. DOI: 10.1002/smll.201905767.
  • Wang, F. H.; Wang, S. S.; Sun, Z. N.; Zhu, H. Study on Ultrasonic Single-Step Synthesis and Optical Properties of Nitrogen-Doped Carbon Fluorescent Quantum Dots. Fuller. Nanotub. Car. N 2015, 23, 769–776. DOI: 10.1080/1536383X.2014.996287.
  • Liu, J. J.; Liang, Y. Q.; Luan, C. P.; Kong, Y. P.; He, F.; Liu, S. Y. A Novel Ratiometric Fluorescent Probe for Detection of Dopamine and Cupric Ions. Fuller. Nanotub. Car. N 2022, 30, 1–8. DOI: 10.1080/1536383X.2021.1935885.
  • Chai, C. F.; Qiao, X. H.; Zheng, L. L.; Duan, H. B.; Bian, W.; Choi, M. M. F. Nitrogen-Doped Carbon Dots a Fluorescent Probe for Detection of p-Hydroxybenzaldehyde and Cell Imaging. Fuller. Nanotub. Car. N 2021. DOI: 10.1080/1536383X.2021.1966419.
  • Jain, R.; Vithalani, R.; Patel, D.; Lad, U.; Modi, C. K.; Suthar, D.; Solanki, J. D.; Surati, K. R. Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots (N-GQDs) as an Efficient Nanoprobe for Imaging of Microbial Cells. Fuller. Nanotub. Car. N 2021, 29, 588–595. DOI: 10.1080/1536383X.2021.1872548.
  • Pan, L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. Near-Infrared Emissive Carbon Dots for Two-Photon Fluorescence Bioimaging. Nanoscale 2016, 8, 17350–17356. DOI: 10.1039/c6nr05878g.
  • Liu, C.; Ning, D.; Zhang, C.; Liu, Z.; Zhang, R.; Zhao, J.; Zhao, T.; Liu, B.; Zhang, Z. Dual-Colored Carbon Dot Ratiometric Fluorescent Test Paper Based on a Specific Spectral Energy Transfer for Semiquantitative Assay of Copper Ions. ACS Appl. Mater. Interfaces 2017, 9, 18897–18903. DOI: 10.1021/acsami.7b05827.
  • Yilmaz, M. D.; Oktem, H. A. Eriochrome Black T-Eu3+ Complex as a Ratiometric Colorimetric and Fluorescent Probe for the Detection of Dipicolinic Acid, a Biomarker of Bacterial Spores. Anal. Chem. 2018, 90, 4221–4225. DOI: 10.1021/acs.analchem.8b00576.
  • Xu, J.; Shen, X.; Jia, L.; Zhang, M.; Zhou, T.; Wei, Y. Facile Ratiometric Fluorapatite Nanoprobes for Rapid and Sensitive Bacterial Spore Biomarker Detection. Biosens. Bioelectron. 2017, 87, 991–997. DOI: 10.1016/j.bios.2016.09.070.
  • Baig, M.; Chen, Y. C. Gold Nanocluster-Based Fluorescence Sensing Probes for Detection of Dipicolinic Acid. Analyst 2019, 144, 3289–3296. DOI: 10.1039/c9an00240e.
  • Cai, K.; Zeng, M.; Liu, F.; Liu, N.; Huang, Z.; Song, Y.; Wang, L. BSA-AuNPs@Tb-AMP Metal-Organic Frameworks for Ratiometric Fluorescence Detection of DPA and Hg2. +Luminescence 2017, 32, 1277–1282. DOI: 10.1002/bio.3321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.