236
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effects of various functional groups in graphene on the tensile and flexural properties of epoxy nanocomposites: a comparative study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1123-1133 | Received 23 Apr 2022, Accepted 10 May 2022, Published online: 19 May 2022

References

  • Wei, H.; Xia, J.; Zhou, W.; Zhou, L.; Hussain, G.; Li, Q.; Ostrikov, K. Adhesion and Cohesion of Epoxy-Based Industrial Composite Coatings. Compos. Part B: Eng. 2020, 193, 108035. DOI: 10.1016/j.compositesb.2020.108035.
  • Singh, P. K.; Sharma, K. Mechanical and Viscoelastic Properties of in-Situ Amine Functionalized Multiple Layer Grpahene/Epoxy Nanocomposites. CNANO. 2018, 14, 252–262. DOI: 10.2174/1573413714666171220144549.
  • Liu, S.; Chevali, V. S.; Xu, Z.; Hui, D.; Wang, H. A Review of Extending Performance of Epoxy Resins Using Carbon Nanomaterials. Compos. Part B: Eng. 2018, 136, 197–214. DOI: 10.1016/j.compositesb.2017.08.020.
  • Kumar, A.; Sharma, K.; Dixit, A. R. Carbon Nanotube- and Graphene-Reinforced Multiphase Polymeric Composites: review on Their Properties and Applications. J. Mater. Sci. 2020, 55, 2682–2724. DOI: 10.1007/s10853-019-04196-y.
  • Martin-Gallego, M.; Bernal, M.; Hernandez, M.; Verdejo, R.; López-Manchado, M. A. Comparison of Filler Percolation and Mechanical Properties in Graphene and Carbon Nanotubes Filled Epoxy Nanocomposites. Eur. Polym. J. 2013, 49, 1347–1353. DOI: 10.1016/j.eurpolymj.2013.02.033.
  • Cha, J.; Kim, J.; Ryu, S.; Hong, S. H. Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets. Compos. Part B: Eng. 2019, 162, 283–288. DOI: 10.1016/j.compositesb.2018.11.011.
  • Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S.-J.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. DOI: 10.1016/j.jiec.2014.03.022.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321, 385–388. DOI: 10.1126/science.1157996.
  • Min, K.; Aluru, N. R. Mechanical Properties of Graphene under Shear Deformation. Appl. Phys. Lett. 2011, 98, 013113. DOI: 10.1063/1.3534787.
  • Lee, C.; Wei, X.; Li, Q.; Carpick, R.; Kysar, J. W.; Hone, J. Elastic and Frictional Properties of Graphene. Phys. Status. Solidi. B. 2009, 246, 2562–2567. DOI: 10.1002/pssb.200982329.
  • Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene Research and Their Outputs: Status and Prospect. J. Sci: Adv. Mater. Devices. 2020, 5, 10–29.
  • Alexopoulos, N. D.; Paragkamian, Z.; Poulin, P.; Kourkoulis, S. K. Fracture Related Mechanical Properties of Low and High Graphene Reinforcement of Epoxy Nanocomposites. Compos. Sci. Technol. 2017, 150, 194–204. DOI: 10.1016/j.compscitech.2017.07.030.
  • Kernin, A.; Wan, K.; Liu, Y.; Shi, X.; Kong, J.; Bilotti, E.; Peijs, T.; Zhang, H. The Effect of Graphene Network Formation on the Electrical, Mechanical, and Multifunctional Properties of Graphene/Epoxy Nanocomposites. Compos. Sci. Technol. 2019, 169, 224–231. DOI: 10.1016/j.compscitech.2018.10.036.
  • Mindivan, F.; Göktaş, M.; Dike, A. S. Mechanical, Thermal, and Micro‐and Nanostructural Properties of Polyvinyl Chloride/Graphene Nanoplatelets Nanocomposites. Polym. Compos. 2020, 41, 3707–3716. DOI: 10.1002/pc.25669.
  • Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical Functionalization of Graphene and Its Applications. Prog. Mater. Sci. 2012, 57, 1061–1105. DOI: 10.1016/j.pmatsci.2012.03.002.
  • Wang, J.; Shi, Z.; Ge, Y.; Wang, Y.; Fan, J.; Yin, J. Solvent Exfoliated Graphene for Reinforcement of PMMA Composites Prepared by in Situ Polymerization. Mater. Chem. Phys. 2012, 136, 43–50. DOI: 10.1016/j.matchemphys.2012.06.017.
  • Mao, H-n.; Wang, X-g. Use of in-Situ Polymerization in the Preparation of Graphene/Polymer Nanocomposites. New Carbon Mater. 2020, 35, 336–343. DOI: 10.1016/S1872-5805(20)60493-0.
  • Qian, Y.; Lan, Y.; Xu, J.; Ye, F.; Dai, S. Fabrication of Polyimide-Based Nanocomposites Containing Functionalized Graphene Oxide Nanosheets by in-Situ Polymerization and Their Properties. Appl. Surf. Sci. 2014, 314, 991–999. DOI: 10.1016/j.apsusc.2014.06.130.
  • Ma, L.; Wang, G.; Dai, J. Preparation and Properties of Graphene Oxide/Polyimide Composites by in Situ Polymerization and Thermal Imidization Process. High Perform. Polym. 2017, 29, 187–196. DOI: 10.1177/0954008316634177.
  • Naeem, M.; Kuan, H.-C.; Michelmore, A.; Meng, Q.; Qiu, A.; Aakyiir, M.; Losic, D.; Zhu, S.; Ma, J. A New Method for Preparation of Functionalized Graphene and Its Epoxy Nanocomposites. Compos. Part B: Eng. 2020, 196, 108096. DOI: 10.1016/j.compositesb.2020.108096.
  • Li, Z.; Young, R. J.; Wang, R.; Yang, F.; Hao, L.; Jiao, W.; Liu, W. The Role of Functional Groups on Graphene Oxide in Epoxy Nanocomposites. Polymer. 2013, 54, 5821–5829. DOI: 10.1016/j.polymer.2013.08.026.
  • Kilic, U.; Sherif, M. M.; Ozbulut, O. E. Tensile Properties of Graphene Nanoplatelets/Epoxy Composites Fabricated by Various Dispersion Techniques. Polym. Test. 2019, 76, 181–191. DOI: 10.1016/j.polymertesting.2019.03.028.
  • Ji, X.; Cui, L.; Xu, Y.; Liu, J. Non-Covalent Interactions for Synthesis of New Graphene Based Composites. Compos. Sci. Technol. 2015, 106, 25–31. DOI: 10.1016/j.compscitech.2014.10.018.
  • Uddin, M. E.; Layek, R. K.; Kim, H. Y.; Kim, N. H.; Hui, D.; Lee, J. H. Preparation and Enhanced Mechanical Properties of Non-Covalently-Functionalized Graphene Oxide/Cellulose Acetate Nanocomposites. Compos. Part B: Eng. 2016, 90, 223–231. DOI: 10.1016/j.compositesb.2015.12.008.
  • Wu, Y.; Chen, M.; Chen, M.; Ran, Z.; Zhu, C.; Liao, H. The Reinforcing Effect of Polydopamine Functionalized Graphene Nanoplatelets on the Mechanical Properties of Epoxy Resins at Cryogenic Temperature. Polym. Test. 2017, 58, 262–269. DOI: 10.1016/j.polymertesting.2016.12.021.
  • Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of Graphene: covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. DOI: 10.1021/cr3000412.
  • Punetha, V. D.; Rana, S.; Yoo, H. J.; Chaurasia, A.; McLeskey, J. T.; Ramasamy, M. S.; Sahoo, N. G.; Cho, J. W. Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites: A Comparison Study between CNT and Graphene. Prog. Polym. Sci. 2017, 67, 1–47. DOI: 10.1016/j.progpolymsci.2016.12.010.
  • Pokharel, P.; Pant, B.; Pokhrel, K.; Pant, H. R.; Lim, J-g.; Lee, D. S.; Kim, H.-Y.; Choi, S. Effects of Functional Groups on the Graphene Sheet for Improving the Thermomechanical Properties of Polyurethane Nanocomposites. Compos. Part B: Eng. 2015, 78, 192–201. DOI: 10.1016/j.compositesb.2015.03.089.
  • Yadav, S. K.; Cho, J. W. Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites. Appl. Surf. Sci. 2013, 266, 360–367. DOI: 10.1016/j.apsusc.2012.12.028.
  • Han, S.; Meng, Q.; Araby, S.; Liu, T.; Demiral, M. Mechanical and Electrical Properties of Graphene and Carbon Nanotube Reinforced Epoxy Adhesives: Experimental and Numerical Analysis. Compos. Part A Appl. Sci. Manuf. 2019, 120, 116–126. DOI: 10.1016/j.compositesa.2019.02.027.
  • Quiles-Díaz, S.; Enrique-Jimenez, P.; Papageorgiou, D. G.; Ania, F.; Flores, A.; Kinloch, I. A.; Gómez-Fatou, M. A.; Young, R. J.; Salavagione, H. J. Influence of the Chemical Functionalization of Graphene on the Properties of Polypropylene-Based Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2017, 100, 31–39. DOI: 10.1016/j.compositesa.2017.04.019.
  • Kulkarni, H.; Tambe, P.; Joshi, G. High Concentration Exfoliation of Graphene in Ethyl Alcohol Using Block Copolymer Surfactant and Its Influence on Properties of Epoxy Nanocomposites. Fulleren. Nanotube. Carbon Nanostruct. 2017, 25, 241–249. DOI: 10.1080/1536383X.2017.1283616.
  • Zhu, L.; Zhang, L.; Li, X.; Jin, X.; Shi, T. Comparative Studies on Thermal and Toughness Properties of Polybenzoxazine Composites with Two Functionalized Graphene Oxides. Fulleren. Nanotube. Carbon Nanostruct. 2020, 28, 551–560. DOI: 10.1080/1536383X.2020.1719999.
  • Smith, M. B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons, 2020.
  • Naderi, M.; Ebrahimi, F.; Najafi, M.; Naderi, H. Reinforcing Effect of Amine‐Functionalized and Carboxylated Porous Graphene on Toughness, Thermal Stability, and Electrical Conductivity of Epoxy‐Based Nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47475. DOI: 10.1002/app.47475.
  • Suresh Kumar, S.; Subramanian, K. Enhancement in Mechanical, Thermal, and Dielectric Properties of Functionalized Graphene Oxide Reinforced Epoxy Composites. Adv. Polym. Technol. 2018, 37, 612–621. DOI: 10.1002/adv.21702.
  • Chen, Y.; Li, D.; Yang, W.; Xiao, C.; Wei, M. Effects of Different Amine-Functionalized Graphene on the Mechanical, Thermal, and Tribological Properties of Polyimide Nanocomposites Synthesized by in Situ Polymerization. Polymer. 2018, 140, 56–72. DOI: 10.1016/j.polymer.2018.02.017.
  • Kudus, M. H. A.; Zakaria, M. R.; Othman, M. B. H.; Akil, H. M. Preparation and Characterization of Colloidized Diamine/Oxidized-Graphene via Condensation Polymerization of Carboxyl Groups Epoxy/Oxidized-Graphene Nanocomposite. Polymer. 2017, 124, 186–202. DOI: 10.1016/j.polymer.2017.07.072.
  • Huang, C.-L.; Lou, C.-W.; Liu, C.-F.; Huang, C.-H.; Song, X.-M.; Lin, J.-H. Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties. Appl. Sci. 2015, 5, 1196–1210. DOI: 10.3390/app5041196.
  • Wang, X.; Xing, W.; Song, L.; Yang, H.; Hu, Y.; Yeoh, G. H. Fabrication and Characterization of Graphene-Reinforced Waterborne Polyurethane Nanocomposite Coatings by the Sol–Gel Method. Surf. Coat. Technol. 2012, 206, 4778–4784. DOI: 10.1016/j.surfcoat.2012.03.077.
  • Gao, Y.; Picot, O. T.; Bilotti, E.; Peijs, T. Influence of Filler Size on the Properties of Poly (Lactic Acid)(PLA)/Graphene Nanoplatelet (GNP) Nanocomposites. Eur. Polym. J. 2017, 86, 117–131. DOI: 10.1016/j.eurpolymj.2016.10.045.
  • Wang, J.; Wang, X.; Xu, C.; Zhang, M.; Shang, X. Preparation of Graphene/Poly (Vinyl Alcohol) Nanocomposites with Enhanced Mechanical Properties and Water Resistance. Polym. Int. 2011, 60, 816–822. DOI: 10.1002/pi.3025.
  • Abdullah, S. I.; Ansari, M. Mechanical Properties of Graphene Oxide (GO)/Epoxy Composites. HBRC J. 2015, 11, 151–156. DOI: 10.1016/j.hbrcj.2014.06.001.
  • Galpaya, D.; Wang, M.; George, G.; Motta, N.; Waclawik, E.; Yan, C. Preparation of Graphene Oxide/Epoxy Nanocomposites with Significantly Improved Mechanical Properties. J. Appl. Phys. 2014, 116, 053518. DOI: 10.1063/1.4892089.
  • Yousefi, N.; Gudarzi, M. M.; Zheng, Q.; Lin, X.; Shen, X.; Jia, J.; Sharif, F.; Kim, J.-K. Highly Aligned, Ultralarge-Size Reduced Graphene Oxide/Polyurethane Nanocomposites: mechanical Properties and Moisture Permeability. Compos. Part A Appl. Sci. Manuf. 2013, 49, 42–50. DOI: 10.1016/j.compositesa.2013.02.005.
  • Olowojoba, G. B.; Eslava, S.; Gutierrez, E. S.; Kinloch, A. J.; Mattevi, C.; Rocha, V. G.; Taylor, A. C. In Situ Thermally Reduced Graphene Oxide/Epoxy Composites: thermal and Mechanical Properties. Appl. Nanosci. 2016, 6, 1015–1022. DOI: 10.1007/s13204-016-0518-y.
  • Zheng, W.; Chen, W. G.; zhao, Q.; Ren, S. X.; Fu, Y. Q. Interfacial Structures and Mechanisms for Strengthening and Enhanced Conductivity of Graphene/Epoxy Nanocomposites. Polymer. 2019, 163, 171–177. DOI: 10.1016/j.polymer.2018.12.055.
  • Lee, M.-W.; Wang, T.-Y.; Tsai, J.-L. Mechanical Properties of Nanocomposites with Functionalized Graphene. J. Compos. Mater. 2016, 50, 3779–3789. DOI: 10.1177/0021998315625788.
  • Deng, H.; Wu, F.; Chen, L.; Xu, Z.; Liu, L.; Yang, C.; Mai, W.; Cheng, B. Enhanced Interfacial Interaction of Epoxy Nanocomposites with Activated Graphene Nanosheets. J. Appl. Polym. Sci. 2014, 131, n/a–n/a. DOI: 10.1002/app.41164.
  • Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L. H.; Chen, Y.; Fox, B. Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Sci. Rep. 2014, 4, 4375. DOI: 10.1038/srep04375.
  • Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. DOI: 10.1039/d0ra01068e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.