100
Views
0
CrossRef citations to date
0
Altmetric
Articles

New sonochemical reactions of the C60 fullerene with amino alcohols yielding morpholine–C60 adducts

ORCID Icon & ORCID Icon
Pages 1134-1141 | Received 06 May 2022, Accepted 12 May 2022, Published online: 23 May 2022

References

  • Martin, N.; Sanchez, L. Llescas B.; Perez, I. C(60)-Based Electroactive Organofullerenes. Chem. Rev. 1998, 98, 2527–2547. DOI: 10.1021/cr9701039.
  • Hamza, A. V.; Balooch, M. The Chemisorption of C60 on Si(100)-(2 × 1). Chem. Phys. Lett. 1993, 201, 404–408. DOI: 10.1016/0009-2614(93)85092-3.
  • Deguchi, S.; Alargova, R. G.; Tsuji, K. Stable Dispersions of Fullerenes, C60 and C70, in Water. Preparation and Characterization. Langmuir. 2001, 17, 6013–6017. DOI: 10.1021/la010651o.
  • Guldi, D. M.; Prato, M. M. Excited-State Properties of C(60) fullerene derivatives. Acc. Chem. Res. 2000, 33, 695–703. DOI: 10.1021/ar990144m.
  • Hirsch, A. Chemistry of the Fullerenes, Thieme: Stuttgart, 1994, 203
  • Diederich, F.; Kessinger, R. In Templated Organic Synthesis, ed. F. Diederich, P. J. Stang, Wiley-VCH: Weinheim, 2000, pp 189–218
  • Sabirov, D.; Terentyev, A. O.; Bulgakov, R. G. Polarizability of Fullerene [2 + 2]-Dimers: A DFT Study. Phys. Chem. Chem. Phys. 2014, 16, 14594–14600. DOI: 10.1039/c3cp55528c.
  • Zieleniewska, A.; Lodermeyer, F.; Roth, A.; Guldi, D. M. Fullerenes - How 25 Years of Charge Transfer Chemistry Have Shaped Our Understanding of (Interfacial) Interactions. Chem. Soc. Rev. 2018, 47, 702–714. DOI: 10.1039/C7CS00728K.
  • Jia, L.; Chen, M.; Yang, S. Functionalization of Fullerene Materials toward Applications in Perovskite Solar Cells. Mater. Chem. Front. 2020, 4, 2256–2282. DOI: 10.1039/D0QM00295J.
  • Nakamura, E.; Isobe, H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 2003, 36, 807–815. DOI: 10.1021/ar030027y.
  • Castro, E.; Garcia, A. H.; Zavala, G.; Echegoyen, L. Fullerenes in Biology and Medicine. J Mater Chem B 2017, 5, 6523–6535. DOI: 10.1039/C7TB00855D.
  • Anilkumar, P.; Lu, F.; Cao, L.; Luo, P. G.; Liu, J.-H.; Sahu, S.; Tackett, K. N.; Wang, Y.; Sun, Y.-P. Fullerenes for Applications in Biology and Medicine. Curr. Med. Chem. 2011, 18, 2045–2059. DOI: 10.2174/092986711795656225.
  • Wang, G.-W.; Li, F.-B. Transition Metal Salt-Mediated Radical Reactions of [60]Fullerene. Curr. Org. Chem. 2012, 16, 1109–1127. DOI: 10.2174/138527212800564286.
  • Tzirakis, M. D.; Orfanopoulos, M. Radical Reactions of Fullerenes: From Synthetic Organic Chemistry to Materials Science and Biology. Chem. Rev. 2013, 113, 5262–5321. DOI: 10.1021/cr300475r.
  • Itami, K. Molecular Catalysis for Fullerene Functionalization. Chem. Rec. 2011, 11, 226–235. DOI: 10.1002/tcr.201100022.
  • Li, F.-B.; Liu, T.-X.; Wang, G.-W. Synthesis of Fullerooxazoles: Novel Reactions of [60]Fullerene with Nitriles Promoted by Ferric Perchlorate. J. Org. Chem. 2008, 73, 6417–6420. DOI: 10.1021/jo8007868.
  • Yang, H.-T.; Liang, X.-C.; Wang, Y.-H.; Yang, Y.; Sun, X.-Q.; Miao, C.-B. Hypervalent Iodine Reagent Mediated Reaction of [60]Fullerene with Amines. Org. Lett. 2013, 15, 4650–4653. DOI: 10.1021/jo402079m.
  • Zhang, X.-F.; Li, F.-B.; Shi, J.-L.; Wu, J.; Liu, L. Ferric Perchlorate-Mediated One-Step Reaction of [60]Fullerene with Primary Amides for the Synthesis of Fullerooxazoles. New J. Chem. 2016, 40, 1626–1632. DOI: 10.1039/C5NJ02503F.
  • Takeda, Y.; Enokijima, S.; Nagamachi, T.; Nakayama, K.; Minakata, S. Straightforward and Versatile Synthesis of Fullerooxazoles from C60 and Carboxamides through Radical Reactions under Mild Conditions. Asian J. Org. Chem. 2013, 2, 91–97. DOI: 10.1002/ajoc.201200114.
  • Yang, H.-T.; Ren, W.-L.; Dong, C.-P.; Yang, Y.; Sun, X.-Q.; Miao, C.-B. PhI(OAc)2/I2-Mediated [3 + 2] Reaction of [60]Fullerene with Amides for the Preparation of Fullerooxazoles. Tetrahedron Lett. 2013, 54, 6799–6803. DOI: 10.1016/j.tetlet.2013.09.002.
  • Yang, H.-T.; Xing, M.-L.; Zhu, Y.-F.; Sun, X.-Q.; Cheng, J.; Miao, C.-B.; Li, F.-B. BF3·Et2O-Catalyzed Formal [3 + 2] Reaction of Aziridinofullerenes with Carbonyl Compounds. J. Org. Chem. 2014, 79, 1487–1492. DOI: 10.1021/jo4025573.
  • You, X.; Wang, G-W. J. Ferric Chloride-Catalyzed Reaction of [60]Fullerene with tert-Butyl N-Substituted Carbamates: Synthesis of Oxazolidino[4,5:1,2][60]Fullerenes. J. Org. Chem. 2014, 79, 117–121. DOI: 10.1021/jo402354w.
  • Zhen, J.; Liu, Q.; Chen, X.; Li, D.; Qiao, Q.; Lu, Y.; Yang, S. An Ethanolamine-Functionalized Fullerene as an Efficient Electron Transport Layer for High-Efficiency Inverted Polymer Solar Cells. J. Mater. Chem. A. 2016, 4, 8072–8079. DOI: 10.1039/C6TA02016J.
  • Dzhemilev, U. M.; Ibragimov, A. G.; Tuktarov, A. R.; Pudas, M.; Valyamova, F. G. Patent. RU 2 309 938 C1.
  • Liu, Q.; Zhen, J.; Zhou, W.; Chen, X.; Li, D.; Yang, S. Efficiency Enhancement of Polymer Solar Cells by Applying an Alcohol-Soluble Fullerene Aminoethanol Derivative as a Cathode Buffer Layer. Org. Electr. 2016, 39, 191–198. DOI: 10.1016/j.orgel.2016.10.009.
  • Yang, H.-T.; Ge, J.; Lu, X.-W.; Sun, X.-Q.; Miao, C.-B. Copper-Catalyzed Functionalizations of C60 with Amino Alcohols. J. Org. Chem. 2017, 82, 5873–5880. DOI: 10.1021/acs.joc.7b00741.
  • Gál, M.; Kolivoška, V.; Kavan, L.; Bulíčková, J.; Pospíšil, L.; Hromadová, M.; Zukalová, M.; Sokolová, R.; Kielar, F. On the Stability of Fullerene C60 in Aqueous Medium. Fullerene Nanotube Carbon Nanostruct. 2012, 20, 737–742. DOI: 10.1080/1536383X.2011.572315.
  • Bulgakov, R. G.; Sabirov, D. S.; Andrievskii, G. V. Chemiluminescence in the Ozonation of C60 Aqueous Dispersions. Russ. Chem. Bull. 2012, 61, 1093–1098. DOI: 10.1007/s11172-012-0148-9.
  • Cataldo, F.; Heymann, D. Effects of Intense Ultrasound Treatment of C60 Solutions. Fullerene Sci. Technol. 1999, 7, 725–732. DOI: 10.1080/1536383X.2011.613544.
  • Ko, W. B.; Baek, K.-N. The Oxidation of Fullerene[C70] with Various Oxidants by Ultrasonication. Ultrasonics. 2002, 39, 729–733. DOI: 10.1016/S0041-624X(02)00377-3.
  • Mandrus, D.; Kele, M.; Hettich, R. L.; Guiochon, G.; Sales, B. C.; Boatner, L. A. Sonochemical Synthesis of C60H2. J. Phys. Chem. B. 1997, 101, 123–128. DOI: 10.1021/jp962056e.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Sonochemical Synthesis of Fullerene C60/Anthracene Diels-Alder Mono and Bis-Adducts. Fullerene Nanotube Carbon Nanostruct. 2014, 2, 565–574. DOI: 10.1080/1536383X.2012.702160.
  • García-Hernández, D. A.; Cataldo, F.; Manchado, A. Infrared Spectroscopy of Fullerene C60/Anthracene Adducts. Mon. Not. R. Astron. Soc. 2013, 434, 415–422. DOI: 10.1093/mnras/stt1032.
  • Yoon, S.; Hwang, S. H.; Ko, W. B. Sonochemical Reaction of Fullerene[C60] with Several 2′-Azidoethyl per-O-Acetyl Glycosides. J. Nanosci. Nanotechnol. 2008, 8, 3136–3141. DOI: 10.1166/jnn.2008.091.
  • Afreen, S.; Muthoosamy, K.; Manickam, S. Sono-Nano Chemistry: A New Era of Synthesising Polyhydroxylated Carbon Nanomaterials with Hydroxyl Groups and Their Industrial Aspects. Ultrason. Sonochem. 2019, 51, 451–461. DOI: 10.1016/j.ultsonch.2018.07.015.
  • Cataldo, F.; Ursini, O.; Ragni, P. Fullerene C60 Trichloromethylation through CCl4 Plasmalysis or Sonolysis. Plasma Chem. Plasma Process. 2013, 33, 355–365. DOI: 10.1007/s11090-012-9417-5.
  • Cataldo, F.; Ursini, O.; Ragni, P. Ultrasound-Assisted Bromination. Part 1: Bromination of C60 and C70. Fullerene Nanotube Carbon Nanostruct. 2013, 21, 346–356. DOI: 10.1080/1536383X.2011.613544.
  • Kinzyabaeva, Z. S.; Sharipov, G. L. A Selective Synthesis of the Fullerene-Fused Dioxane Adduct via Heterogeneous Reaction of C60 with α-Diols and NaOH under Ultrasonication. Ultrason. Sonochem. 2018, 42, 119–123. DOI: 10.1016/j.ultsonch.2017.11.012.
  • Kinzyabaeva, Z. S.; Sadykov, R. A.; Sharipov, G. L. Free-Radical Mechanism of the Sonochemical Reaction of Fullerenes C60 and C70 with Ethylene Glycol in the Presence of NaOH. Fullerene Nanotube Carbon Nanostruct. 2019, 27, 878–886. DOI: 10.1080/1536383X.2019.1653857.
  • Sabirov, D.; Kinzyabaeva, Z. S. Sonochemical Synthesis of Novel C60 Fullerene 1,4-Oxathiane Derivative through the Intermediate Fullerene Radical Anion. Ultrason. Sonochem. 2020, 67, 105169. DOI: 10.1016/j.ultsonch.2020.105169.
  • Kinzyabaeva, Z. S.; Sharipov, G. L.; Sabirov, D. The First Steps toward C70 Cycloadducts with a Sulfur–Fullerene Bond: A Selective Sonochemical Synthesis of Single C70–1,4-Oxathiane. Fullerene Nanotube Carbon Nanostruct. 2021, 29, 137–143. DOI: 10.1080/1536383X.2020.1816975.
  • Kinzyabaeva, Z. S.; Dmitriev, A. M.; Sabirov, D. S. A Sonochemical Synthesis of the Piperazine-Containing Adducts of the C60 Fullerene. Fullerene Nanotube Carbon Nanostruct. 2021, 29, 601–607. DOI: 10.1080/1536383X.2021.1873782.
  • Kinzyabaeva, Z. S. Sonochemical Synthesis of 1′,4′-Dialkyl-1′,4′,5′,6′-Tetrahydropyrazino[2′,3′:1,9](C60-Ih)[5,6]Fullerenes. Chem. Heterocycl. Comp. 2021, 57, 602–605. DOI: 10.1007/s10593-021-02950-2.
  • Sabirov, D.; Garipova, R. R.; Kinzyabaeva, Z. S. Fullerene–1,4-Dioxane Adducts: A DFT Study of the Structural Features and Molecular Properties. Fullerene Nanotube Carbon Nanostruct. 2020, 28, 154–159. DOI: 10.1080/1536383X.2019.1680984.
  • Gurvich, L. V.; Karachevtsev, G. V.; Kondratiev, V. N.; Lebedev, Y. A.; Medvedev, V. A.; Potapov, V. K.; Khodeev, Y. In Energies of Breaking Chemical Bonds. Ionization Potentials and Electron Affinities, Moscow: Nauka, 1974, 351
  • Isaacs, L.; Wehrsig, A.; Diederich, F. Improved Purification of C60 and Formation of σ- and π-Homoaromatic Methano-Bridged Fullerenes by Reaction with Alkyl Diazoacetates. Helv. Chim. Acta. 1993, 76, 1231–1250. DOI: 10.1002/hlca.19930760310.
  • Elemes, Y.; Silverman, S. K.; Sheu, C.; Kao, M.; Foote, C. S.; Alvarez, M. M.; Whetten, R. L. Reaction of C60 with Dimethyldioxirane – Formation of an Epoxide and a 1,3‐Dioxolane Derivative. Angew. Chem. Int. Ed. Engl. 1992, 31, 351–353. DOI: 10.1002/anie.199203511.
  • Hirsch, A.; Li, Q.; Wundl, L.; Wundl, F. Globe-Trotting Hydrogens on the Surface of the Fullerene Compound C60H6(N(CH2CH2)2O)6. Angew. Chem. Int. Ed. Engl. 1991, 30, 1309–1310. DOI: 10.1002/anie.199113091.
  • Wudl, F.; Hirsch, A.; Khemani, K. C.; Suzuki, T.; Allemand, P.-M.; Koch, A.; Eckert, H.; Srdanov, G.; Webb, H. M. InSynthesis, Properties, and Chemsitry of Large Carbon Clusters, ACS Symposium Series, ed. G. S. Hammond, V. J. Kuck, American Chemical Society: Washington, DC, 1992, 481, 161–176
  • Lobach, A. S.; Goldshleger, N. F.; Kaplunov, M. G.; Kulikov, A. V. Near-IR and ESR Studies of the Radical Anions of C60 and C70 in the System Fullerene–Primary Amine. Chem. Phys. Lett. 1995, 243, 22–28. DOI: 10.1016/0009-2614(95)00811-H.
  • Suslick, K. S. Homogeneous Sonochemistry., in Ultrasound: Its Chemical, Physical, and Biological Effects, ed. Suslick, K. S., VCH Publishers: New York, 1988, pp 123–164.
  • Misik, V.; Riesz, P. Free Radical Formation by Ultrasound in Organic Liquids: A Spin Trapping and EPR Study. J. Phys. Chem. 1994, 98, 1634–1640. DOI: 10.1021/j100057a016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.