882
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of different mixing methods on the conductivities of poly(2-ethyl aniline)/graphene and poly(2-ethyl aniline)/expanded graphite composites

Pages 1148-1162 | Received 18 May 2022, Accepted 18 May 2022, Published online: 29 May 2022

References

  • Rahmanifar, M. S.; Mousavi, M. F.; Shamsipur, M. Effect of Self-Doped Polyaniline on Performance of Secondary Zn–Polyaniline Battery. J. Power Sources 2002, 110, 229–232. DOI: 10.1016/S0378-7753(02)00260-4.
  • Ghanbari, K.; Mousavi, M. F.; Shamsipur, M. Preparation of Polyaniline Nanofibers and Their Use as a Cathode of Aqueous Rechargeable Batteries. Electrochim. Acta 2006, 52, 1514–1522. DOI: 10.1016/j.electacta.2006.02.051.
  • Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Database] DOI: 10.1016/j.progpolymsci.2009.04.003.
  • Vaschetto, M. E.; Monkman, A. P.; Springborg, M. First-Principles Studies of Some Conducting Polymers: PPP, PPy, PPV, PPyV, and PANI. J. Mol. Struct.: Theochem. 1999, 468, 181–191. DOI: 10.1016/S0166-1280(98)00565-X.
  • Shafee, M. F.; Zubir, S. A.; Mustapha, M. Development of Conductive Graphene/Polyaniline Nanocomposites Produced by in-Situ Polymerization and Solvent Blending Method. Malaysian J. Microsc. 2019, 15, 61–71. ISSN1823-7010 eISSN: 2600–7444.
  • Stejskal, J.; Gilbert, R. G. Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. [Database] DOI: 10.1351/pac200274050857.
  • Konwer, S.; Pokhrel, B.; Dolui, S. K. Synthesis and Characterization of Polyaniline/Graphite Composites and Study of Their Electrical and Electrochemical Properties. J. Appl. Polym. Sci. 2010, 116, 1138–1145. DOI: 10.1002/app.31633.
  • Bissessur, R.; White, W. Novel Alkyl Substituted Polyanilines/Molybdenum Disulfide Nanocomposites. Mater. Chem. Phys. 2006, 99, 214–219. DOI: 10.1016/j.matchemphys.2005.10.012.
  • Sebastian, J.; Samuel, J. M. Recent Advances in the Applications of Substituted Polyanilines and Their Blends and Composites. Polym. Bull. 2020, 77, 6641–6669. DOI: 10.1007/s00289-019-03081-7.
  • Thanokiang, J.; Sakunpongpitiporn, P.; Direksilp, C.; Choeichom, P.; Phasuksom, K.; Paradee, N.; Sirivat, A. Synthesis and Characterization of Conducting Poly(2-Ethylaniline) Nanoparticle: Effect of Surfactant Template on Morphology and Electrical Conductivity. Synth. Met. 2019, 256, 116142. DOI: 10.1016/j.synthmet.2019.116142.
  • Simões, F. R.; Bulhões, L. O. S.; Pereira, E. C. Synthesis and Characterization of Conducting Composites of Polyaniline and Carbon Black with High Thermal Stability. Polimeros 2009, 19, 54–57. DOI: 10.1590/S0104-14282009000100013.
  • Reda, S. M.; Al-Ghannam, S. M. Synthesis and Electrical Properties of Polyaniline Composite with Silver Nanoparticles. Adv. Mater. Phys. Chem. 2012, 2, 75–81. DOI: 10.4236/ampc.2012.22013.
  • Du, X. S.; Xiao, M.; Meng, Y. Z. Facile Synthesis of Highly Conductive Polyaniline/Graphite Nanocomposites. Eur. Polym. J. 2004, 40, 1489–1493. DOI: 10.1016/j.eurpolymj.2004.02.009.
  • Lafuente, E.; Callejas, M. A.; Sainz, R.; Benito, A. M.; Maser, W. K.; Sanjuán, M. L.; Saurel, D.; de Teresa, J. M.; Martínez, M. T. The Influence of Single-Walled Carbon Nanotube Functionalization on the Electronic Properties of Their Polyaniline Composites. Carbon 2008, 46, 1909–1917. DOI: 10.1016/j.carbon.2008.07.039.
  • Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-Based Composites. Chem. Soc. Rev. 2012, 41, 666–686. DOI: 10.1039/C1CS15078B.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI: 10.1021/nl0731872.
  • Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene Oxide Doped Polyaniline for Supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161. DOI: 10.1016/j.elecom.2009.03.036.
  • Wei, T.; Luo, G.; Fan, Z.; Zheng, C.; Yan, J.; Yao, C.; Li, W.; Zhang, C. Preparation of Graphene Nanosheet/Polymer Composites Using in Situ Reduction–Extractive Dispersion. Carbon 2009, 47, 2296–2299. DOI: 10.1016/j.carbon.2009.04.030.
  • Wang, L.; Lu, X.; Lei, S.; Song, Y. Graphene-Based Polyaniline Nanocomposites: Preparation, Properties and Applications. J. Mater. Chem. A 2014, 2, 4491–4509. DOI: 10.1039/C3TA13462H.
  • Dhakate, S. R.; Sharma, S.; Borah, M.; Mathur, R. B.; Dhami, T. L. Development and Characterization of Expanded Graphite-Based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Energy Fuels 2008, 22, 3329–3334. DOI: 10.1021/ef800135f.
  • Alekseev, A.; Chen, D.; Tkalya, E. E.; Ghislandi, M. G.; Syurik, Y.; Ageev, O.; Loos, J.; de With, G. Local Organization of Graphene Network inside Graphene/Polymer Composites. Adv. Funct. Mater. 2012, 22, 1311–1318. DOI: 10.1002/adfm.201101796.
  • Syurik, Y. V.; Ghislandi, M. G.; Tkalya, E. E.; Paterson, G.; McGrouther, D.; Ageev, O. A.; Loos, J. Graphene Network Organisation in Conductive Polymer Composites. Macromol. Chem. Phys. 2012, 213, 1251–1258. DOI: 10.1002/macp.201200116.
  • Fadil, Y.; Dinh, L. N. M.; Yap, M. O. Y.; Kuchel, R. P.; Yao, Y.; Omura, T.; Aregueta-Robles, U. A.; Song, N.; Huang, S.; Jasinski, F.; et al. Ambient-Temperature Waterborne Polymer/rGO Nanocomposite Films: Effect of rGO Distribution on Electrical Conductivity. ACS Appl. Mater. Interfaces 2019, 11, 48450–48458. DOI: 10.1021/acsami.9b19183.
  • Liang, A.; Jiang, X.; Hong, X.; Jiang, Y.; Shao, Z.; Zhu, D. Recent Developments concerning the Dispersion Methods and Mechanisms of Graphene. Coatings 2018, 8, 33. DOI: 10.3390/coatings8010033.
  • Jiang, J. X.; Zhang, X.-Z.; Wang, Z. H.; Xu, J. J. Graphene/Polyaniline Composite Sponge of Three-Dimensional Porous Network Structure as Supercapacitor Electrode. Chin. Phys. B 2016, 25, 048102. DOI: 10.1088/1674-1056/25/4/048102.
  • Kulyk, B.; Freitas, M. A.; Santos, N. F.; Mohseni, F.; Carvalho, A. F.; Yasakau, K.; Fernandes, A. J. S.; Bernardes, A.; Figueiredo, B.; Silva, R. A Critical Review on the Production and Application of Graphene and Graphene-Based Materials in anti-Corrosion Coatings. Crit. Rev. Solid State Mater. Sci. 2021, 47, 1–48. DOI: 10.1080/10408436.2021.1886046.
  • Chen, X.; Meng, F.; Zhou, Z.; Tian, X.; Shan, L.; Zhu, S.; Xu, X.; Jiang, M.; Wang, L.; Hui, D.; et al. One-Step Synthesis of Graphene/Polyaniline Hybrids by in Situ Intercalation Polymerization and Their Electromagnetic Properties. Nanoscale 2014, 6, 8140–8148. DOI: 10.1039/C4NR01738B.
  • Bourdo, S. E.; Warford, B. A.; Viswanathan, T. Electrical and Thermal Properties of Graphite/Polyaniline Composites. J. Solid State Chem. 2012, 196, 309–313. DOI: 10.1016/j.jssc.2012.06.038.
  • Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 2010, 4, 1963–1970. DOI: 10.1021/nn1000035.
  • Elnaggar, E. M.; Kabel, K. I.; Farag, A. A.; Al-Gamal, A. G. Comparative Study on Doping of Polyaniline with Graphene and Multi-Walled Carbon Nanotubes. J. Nanostruct. Chem. 2017, 7, 75–83. DOI: 10.1007/s40097017-0217-6.
  • Wang, Y.; Yang, M.; Chen, H.; Zhao, X.; Yin, J. Dielectric Polarization and Electrorheological Response of Poly(Ethylaniline)-Coated Reduced Graphene Oxide Nanoflakes with Different Reduction Degrees. Polymers 2020, 12, 2528. DOI: 10.3390/polym12112528.
  • Mahla, D. K.; Rahaman, M.; Khastgir, D. Composition-Dependent Electrical and Dielectric Properties of Polyaniline/Graphene Composites Produced by in Situ Polymerization Technique. Polym. Compos. 2015, 36, 445–453. DOI: 10.1002/pc.22959.
  • Yin, J.; Wang, J. X.; Chang, R.; Zhao, X. Polyaniline Decorated Graphene Sheet Suspension with Enhanced Electrorheology. Soft Matter 2012, 8, 294–297. DOI: 10.1039/C1SM06728A.
  • Mo, Z.; Shi, H.; Chen, H.; Niu, G.; Zhao, Z.; Wu, Y. Synthesis of Graphite Nanosheets/Polyaniline Nanorods Composites with Ultrasonic and Conductivity. J. Appl. Polym. Sci. 2009, 112, 573–578. DOI: 10.1002/app.29411.
  • Jiang, Y.; Ji, J.; Huang, L.; He, C.; Zhang, J.; Wang, X.; Yang, Y. One-Pot Mechanochemical Exfoliation of Graphite and in Situ Polymerization of Aniline for the Production of Graphene/Polyaniline Composites for High-Performance Supercapacitors. RSC Adv. 2020, 10, 44688–44698. DOI: 10.1039/D0RA08450F.
  • Zhao, X.; Gnanaseelan, M.; Jehnichen, D.; Simon, F.; Pionteck, J. Green and Facile Synthesis of Polyaniline/Tannic Acid/rGO Composites for Supercapacitor Purpose. J. Mater. Sci. 2019, 54, 10809–10824. DOI: 10.1007/s10853-019-03654-x.
  • León, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vázquez, E. Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions. ACS Nano 2014, 8, 563–571. DOI: 10.1021/nn405148t.
  • Jun, Y. S.; Um, J. G.; Jiang, G.; Yu, A. A Study on the Effects of Graphene Nano-Platelets (GnPs) Sheet Sizes from a Few to Hundred Microns on the Thermal, Mechanical, and Electrical Properties of Polypropylene (PP)/GnPs Composites. Express Polym. Lett. 2018, 12, 885–897. DOI: 10.3144/expresspolymlett.2018.76.
  • Khasim, S. Polyaniline-Graphene Nanoplatelet Composite Films with Improved Conductivity for High Performance X-Band Microwave Shielding Applications. Results Phys. 2019, 12, 1073–1081. DOI: 10.1016/j.rinp.2018.12.087.
  • Zheng, Z.; Huang, L.; Yan, L.; Yuan, F.; Wang, L.; Wang, K.; Lawson, T.; Lin, M.; Liu, Y. Polyaniline Functionalized Graphene Nanoelectrodes for the Regeneration of PC12 Cells via Electrical Stimulation. Int. J. Mol. Sci. 2019, 20, 2013. DOI: 10.3390/ijms20082013.
  • Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai, L.; Baek, J. B. Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano 2012, 6, 1715–1723. DOI: 10.1021/nn204688c.
  • Güler, Ö.; Güler, S. H.; Selen, V.; Albayrak, M. G.; Evin, E. Production of Graphene Layer by Liquid-Phase Exfoliation with Low Sonication Power and Sonication Time from Synthesized Expanded Graphite. Fullerenes Nanotubes Carbon Nanostruct. 2016, 24, 123–127. DOI: 10.1080/1536383X.2015.1114472.
  • Saini, P.; Choudhary, V.; Dhawan, S. K. Electrical Properties and EMI Shielding Behavior of Highly Thermally Stable Polyaniline/Colloidal Graphite Composites. Polym. Adv. Technol. 2009, 20, 355–361. DOI: 10.1002/pat.1230.
  • Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced Sensitivity of Ammonia Sensor Using Graphene/Polyaniline Nanocomposite. Sens. Actuators, B 2013, 178, 485–493. DOI: 10.1016/j.snb.2013.01.014.
  • Boeva, Z. A.; Milakin, K. A.; Pesonen, M.; Ozerin, A. N.; Sergeyev, V. G.; Lindfors, T. Dispersible Composites of Exfoliated Graphite and Polyaniline with Improved Electrochemical Behaviour for Solid-State Chemical Sensor Applications. RSC Adv. 2014, 4, 46340–46350. DOI: 10.1039/C4RA08362H.
  • Rajagopalan, B.; Hur, S. H.; Chung, J. S. Surfactant-Treated Graphene Covered Polyaniline Nanowires for Supercapacitor Electrode. Nanoscale Res. Lett. 2015, 10, 183. DOI: 10.1186/s11671-015-0888-1.
  • Hayyan, M.; Abo-Hamad, A.; AlSaadi, M. A.; Hashim, M. A. Functionalization of Graphene Using Deep Eutectic Solvents. Nanoscale Res. Lett. 2015, 10, 324. DOI: 10.1186/s11671-015-1004-2.
  • Mashkouri, S.; Arsalani, N.; Hossienzadeh, A.; Shahryari, E.; Safavi, M. Green Synthesis of Nanocomposite Multilayer Graphene‑ZnTiO3 at One Step under Mechanochemical Method and Investigation of Band Gap. J. Mater. Sci.: Mater. Electron. 2020, 31, 4582–4586. DOI: 10.1007/s10854-020-03009-2.
  • Kamel, S.; El-Sakhawy, M.; Anis, B.; Tohamy, H. A. S. Graphene: Structure, Synthesis, and Characterization; a Brief Review. Egypt. J. Chem. 2019, 62, 593–608.
  • Sur, U. K.; Saha, A.; Datta, A.; Ankamwar, B.; Surti, F.; Roy, S. D.; Roy, D. Synthesis and Characterization of Stable Aqueous Dispersions of Graphene. Bull. Mater. Sci. 2016, 39, 159–165. DOI: 10.1007/s12034-015-0893-0.
  • Vasanthi, V.; Logu, T.; Ramakrishnan, V.; Anitha, K.; Sethuraman, K. Study of Electrical Conductivity and Photoelectric Response of Liquid Phase Exfoliated Graphene Thin Film Prepared via Spray Pyrolysis Route. Carbon Lett. 2020, 30, 417–423. DOI: 10.1007/s42823-019-00111-2.
  • Hadi, A.; Zahirifar, J.; Karimi-Sabet, J.; Dastbaz, A. Graphene Nanosheets Preparation Using Magnetic Nanoparticle Assisted Liquid Phase Exfoliation of Graphite: The Coupled Effect of Ultrasound and Wedging Nanoparticles. Ultrason. Sonochem. 2018, 44, 204–214. DOI: 10.1016/j.ultsonch.2018.02.028.
  • Pavan, A. S. S.; Ramanan, S. R. A Study on Corrosion Resistant Graphene Films on Low Alloy Steel. Appl. Nanosci. 2016, 6, 1175–1181. DOI: 10.1007/s13204-016-0530-2.
  • Mondal, T.; Bhowmick, A. K.; Krishnamoorti, R. Chlorophenyl Pendant Decorated Graphene Sheet as a Potential Antimicrobial Agent: Synthesis and Characterization. J. Mater. Chem. 2012, 22, 22481–22487. DOI: 10.1039/c2jm33398h.
  • Chowdhury, D. R.; Singh, C.; Paul, A. Role of Graphite Precursor and Sodium Nitrate in Graphite Oxide Synthesis. RSC Adv. 2014, 4, 15138–15145. DOI: 10.1039/c4ra01019a.
  • Johnson, D. W.; Dobson, B. P.; Coleman, K. S. A Manufacturing Perspective on Graphene Dispersions. Curr. Opin. Colloid Interface Sci. 2015, 20, 367–382. DOI: 10.1016/j.cocis.2015.11.004.
  • García-Gallegos, J. C.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J. Fast Mechanochemical Synthesis of Carbon Nanotube-Polyaniline Hybrid Materials. J. Mater. Res. 2018, 33, 1486–1495. DOI: 10.1557/jmr.2018.56.
  • Pan, C.; Zhang, L.; Pan, Z.; Chen, M.; Liu, Y.; Huang, G.; Na, H.; Wang, W.; Qiu, H.; Gao, J. A Simple Strategy to Fabricate Polyaniline/Expanded Graphite Composites with Improved Power Factor. Mater. Chem. Phys. 2015, 167, 315–319. DOI: 10.1016/j.matchemphys.2015.10.050.
  • Posudievsky, O. Y.; Kozarenko, O. A.; Dyadyun, V. S.; Kotenko, I. E.; Koshechko, V. G.; Pokhodenko, V. D. Mechanochemically Prepared Polyaniline and Graphene-Based Nanocomposites as Electrodes of Supercapacitors. J. Solid State Electrochem. 2018, 22, 3419–3430. DOI: 10.1007/s10008-018-4052-6.
  • Xiang, C.; Li, L.; Jin, S.; Zhang, B.; Qian, H.; Tong, G. Expanded Graphite/Polyaniline Electrical Conducting Composites: Synthesis, Conductive and Dielectric Properties. Mater. Lett. 2010, 64, 1313–1315. DOI: 10.1016/j.matlet.2010.03.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.