201
Views
0
CrossRef citations to date
0
Altmetric
Articles

Catalytic performances of fluorine-doped graphene/Pb composite for thermal decomposition of ammonium perchlorate

, , , , , , & show all
Pages 1171-1179 | Received 12 Apr 2022, Accepted 18 May 2022, Published online: 26 May 2022

References

  • Yan, Q. L.; Zhao, F. Q.; Kuo, K. K.; Zhang, X. H.; Zeman, S.; DeLuca, L. T. Catalytic Effects of Nano Additives on Decomposition and Combustion of RDX-, HMX-, and AP-Based Energetic Compositions. Prog. Energy. Combust. Sci. 2016, 57, 75–136. DOI: 10.1016/j.pecs.2016.08.002.
  • Trache, D.; Klapötke, T. M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L. T. Recent Advances in New Oxidizers for Solid Rocket Propulsion. Green Chem. 2017, 19, 4711–4736. DOI: 10.1039/C7GC01928A.
  • Zhang, Y.; Li, K.; Liao, J.; Wei, X.; Zhang, L. Microwave-Assisted Synthesis of Graphitic Carbon Nitride/CuO Nanocomposites and the Enhancement of Catalytic Activities in the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2020, 499, 143875. DOI: 10.1016/j.apsusc.2019.143875.
  • Chandrababu, P.; Thankarajan, J.; Sukumaran Nair, V.; Raghavan, R. Decomposition of Ammonium Perchlorate: Exploring Catalytic Activity of Nanocomposites Based on Nano Cu/Cu2O Dispersed on Graphitic Carbon Nitride. Thermochim. Acta 2020, 691, 178720. DOI: 10.1016/j.tca.2020.178720.
  • Chen, T.; Hu, Y.; Zhang, C.; Gao, Z. Recent Progress on Transition Metal Oxides and Carbon-Supported Transition Metal Oxides as Catalysts for Thermal Decomposition of Ammonium Perchlorate. Def. Technol. 2021, 17, 1471–1485. DOI: 10.1016/j.dt.2020.08.004.
  • Jiang, L.; Fu, X.; Meng, S.; Li, J.; Xie, W.; Fan, X. Graphene Oxide–(Ferrocenylmethyl) Dimethylammonium Nitrate Composites as Catalysts for Ammonium Perchlorate Thermolysis. ACS Appl. Nano Mater. 2022, 5, 1209–1219. DOI: 10.1021/acsanm.1c03817.
  • Zhang, M.; Zhao, F.; Yang, Y.; Zhang, J.; Li, N.; Gao, H. Effect of rGO–Fe2O3 Nanocomposites Fabricated in Different Solvents on the Thermal Decomposition Properties of Ammonium Perchlorate. CrystEngComm. 2018, 20, 7010–7019. DOI: 10.1039/C8CE01434E.
  • Sharma, J. K.; Srivastava, P.; Singh, G.; Akhtar, M. S.; Ameen, S. Biosynthesized NiO Nanoparticles: Potential Catalyst for Ammonium Perchlorate and Composite Solid Propellants. Ceram. Int. 2015, 41, 1573–1578. DOI: 10.1016/j.ceramint.2014.09.093.
  • Li, L.; Sun, X.; Qiu, X.; Xu, J.; Li, G. Nature of Catalytic Activities of CoO Nanocrystals in Thermal Decomposition of Ammonium Perchlorate. Inorg. Chem. 2008, 47, 8839–8846. DOI: 10.1021/ic8008283.
  • Benhammada, A.; Trache, D.; Chelouche, S.; Mezroua, A. Catalytic Effect of Green CuO Nanoparticles on the Thermal Decomposition Kinetics of Ammonium Perchlorate. Z. Anorg. Allg. Chem. 2021, 647, 312–325. DOI: 10.1002/zaac.202000295.
  • Li, N.; Geng, Z.; Cao, M.; Ren, L.; Zhao, X.; Liu, B.; Tian, Y.; Hu, C. Well-Dispersed Ultrafine Mn3O4 Nanoparticles on Graphene as a Promising Catalyst for the Thermal Decomposition of Ammonium Perchlorate. Carbon. 2013, 54, 124–132. DOI: 10.1016/j.carbon.2012.11.009.
  • Yan, N.; Qin, L.; Li, J.; Zhao, F.; Feng, H. Atomic Layer Deposition of Iron Oxide on Reduced Graphene Oxide and Its Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2018, 451, 155–161. DOI: 10.1016/j.apsusc.2018.04.247.
  • Zhang, G.; Gou, B.; Yang, Y.; Liu, M.; Li, X.; Xiao, L.; Hao, G.; Zhao, F.; Jiang, W. CuO/PbO Nanocomposite: Preparation and Catalysis for Ammonium Perchlorate Thermal Decomposition. ACS Omega. 2020, 5, 32667–32676. DOI: 10.1021/acsomega.0c05050.
  • Kumar, H.; Tengli, P. N.; Mishra, V. K.; Tripathi, P.; Bhushan, A.; Mishra, P. K. The Effect of Reduced Graphene Oxide on the Catalytic Activity of Cu–Cr–O–TiO2 to Enhance the Thermal Decomposition Rate of Ammonium Perchlorate: An Efficient Fuel Oxidizer for Solid Rocket Motors and Missiles. RSC Adv. 2017, 7, 36594–36604. DOI: 10.1039/C7RA06012B.
  • Dey, A.; Nangare, V.; More, P. V.; Khan, M. A. S.; Khanna, P. K.; Sikder, A. K.; Chattopadhyay, S. A. Graphene Titanium Dioxide Nanocomposite (GTNC): One Pot Green Synthesis and Its Application in a Solid Rocket Propellant. RSC Adv. 2015, 5, 63777–63785. DOI: 10.1039/C5RA09295G.
  • Chen, S.; An, T.; Gao, Y.; Lyu, J.; Tang, D.; Zhang, X.; Zhao, F.; Yan, Q. Gaseous Products Evolution Analyses for Catalytic Decomposition of AP by Graphene-Based Additives. Nanomaterials. 2019, 9, 801. DOI: 10.3390/nano9050801.
  • Abarca, G.; Ríos, P. L.; Povea, P.; Cerda-Cavieres, C.; Morales-Verdejo, C.; Arroyo, J. L.; Camarada, M. B. Nanohybrids of Reduced Graphene Oxide and Cobalt Hydroxide (Co(OH)2|rGO) for the Thermal Decomposition of Ammonium Perchlorate. RSC. Adv. 2020, 10, 23165–23172. DOI: 10.1039/D0RA02853C.
  • Zhang, W.; Luo, Q.; Duan, X.; Zhou, Y.; Pei, C. Nitrated Graphene Oxide and Its Catalytic Activity in Thermal Decomposition of Ammonium Perchlorate. Mater. Res. Bull. 2014, 50, 73–78. DOI: 10.1016/j.materresbull.2013.10.023.
  • Isert, S.; Xin, L.; Xie, J.; Son, S. F. The Effect of Decorated Graphene Addition on the Burning Rate of Ammonium Perchlorate Composite Propellants. Combust. Flame. 2017, 183, 322–329. DOI: 10.1016/j.combustflame.2017.05.024.
  • Cheng, J.; Yan, J.; Wang, L.; Zhang, R.; Liu, Z.; Wang, R.; Li, Z. Functionalization Graphene Oxide with Energetic Groups as a New Family of Metal-Free and Energetic Burning Rate Catalysts and Desensitizers for Ammonium Perchlorate. J. Therm. Anal. Calorim. 2020, 140, 2111–2122. DOI: 10.1007/s10973-019-08938-7.
  • Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. DOI: 10.1002/advs.201500413.
  • Gong, P.; Wang, Z.; Fan, Z.; Hong, W.; Yang, Z.; Wang, J.; Yang, S. Synthesis of Chemically Controllable and Electrically Tunable Graphene Films by Simultaneously Fluorinating and Reducing Graphene Oxide. Carbon. 2014, 72, 176–184. DOI: 10.1016/j.carbon.2014.01.070.
  • Jiang, Y.; Demko, A. R.; Baek, J.; Shi, X.; Vallez, L.; Ning, R.; Zheng, X. Facilitating Laser Ignition and Combustion of Boron with a Mixture of Graphene Oxide and Graphite Fluoride. Appl. Energy. Combust. Sci. 2020, 1–4, 100013. DOI: 10.1016/j.jaecs.2020.100013.
  • Liu, X.; Li, X.; Li, Y.; Qin, R.; Huang, F.; Wang, X.; Liu, X. Regulating the Bonding Nature and Location of C–F Bonds in Fluorinated Graphene by Doping Nitrogen Atoms. Ind. Eng. Chem. Res. 2021, 60, 875–884. DOI: 10.1021/acs.iecr.0c04225.
  • Zhang, C.; Huang, R.; Wang, P.; Wang, Y.; Zhou, Z.; Zhang, H.; Wu, Z.; Li, L. Highly Compressible, Thermally Conductive, yet Electrically Insulating Fluorinated Graphene Aerogel. ACS Appl Mater. Interfaces. 2020, 12, 58170–58178. DOI: 10.1021/acsami.0c19628.
  • Khavrel, P. A.; Skokan, E. V.; Rybalchenko, A. V.; Maslakov, K. I.; Chilingarov, N. S.; Baskakov, S. A.; Shulga, Y. M.; Polyakova, M. V.; Goryunkov, A. A. Fluorinated Microwave Exfoliated Graphite Oxide: Structural Features and Double Layer Capacitance. Fuller. Nanotub. Car. N. 2016, 24, 266–272. DOI: 10.1080/1536383X.2016.1149815.
  • Valluri, S. K.; Schoenitz, M.; Dreizin, E. Fluorine-Containing Oxidizers for Metal Fuels in Energetic Formulations. Def. Technol. 2019, 15, 1–22. DOI: 10.1016/j.dt.2018.06.001.
  • Sekiya, Y.; Sugiyama, H.; Sagisaka, K.; Kondo, A.; Hattori, Y. Restricted Adsorption of Carbon Dioxide Gas in Fluorinated Single-Walled Carbon Nanotubes. Fuller. Nanotub. Car. N. 2018, 26, 1–5. DOI: 10.1080/1536383X.2018.1493460.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010, 4, 4806–4814. DOI: 10.1021/nn1006368.
  • Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, S.; Janoušek, Z.; Šembera, F.; Pumera, M.; Sofer, Z. Water-Soluble Highly Fluorinated Graphite Oxide. RSC. Adv. 2014, 4, 1378–1387. DOI: 10.1039/C3RA45183F.
  • Bon, S. B.; Valentini, L.; Verdejo, R.; Garcia Fierro, J. L.; Peponi, L.; Lopez-Manchado, M. A.; Kenny, J. M. Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification with Butylamine. Chem. Mater. 2009, 21, 3433–3438. DOI: 10.1021/cm901039j.
  • Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Yang, J. Mechanism Study on Adsorption of Acidified Multiwalled Carbon Nanotubes to Pb(II). J. Colloid. Interface. Sci. 2007, 316, 277–283. DOI: 10.1016/j.jcis.2007.07.075.
  • Zhao, F.; Zhao, G.; Liu, X.; Ge, C.; Wang, J.; Li, B.; Wang, Q.; Li, W.; Chen, Q. Fluorinated Graphene: facile Solution Preparation and Tailorable Properties by Fluorine-Content Tuning. J. Mater. Chem. A. 2014, 2, 8782–8789. DOI: 10.1039/C4TA00847B.
  • Guo, A.; Chen, E.; Wygant, B. R.; Heller, A.; Mullins, C. B. Lead Oxide Microparticles Coated by Ethylenediamine-Cross-Linked Graphene Oxide for Lithium Ion Battery Anodes. ACS Appl. Energy. Mater. 2019, 2, 3017–3020. DOI: 10.1021/acsaem.9b00401.
  • Fan, K.; Chen, X.; Wang, X.; Liu, X.; Liu, Y.; Lai, W.; Liu, X. Toward Excellent Tribological Performance as Oil-Based Lubricant Additive: Particular Tribological Behavior of Fluorinated Graphene. ACS Appl. Mater. Interfaces. 2018, 10, 28828–28838. DOI: 10.1021/acsami.8b07635.
  • Wang, X.; Wang, W.; Liu, Y.; Ren, M.; Xiao, H.; Liu, X. Characterization of Conformation and Locations of C-F Bonds in Graphene Derivative by Polarized ATR-FTIR. Anal. Chem. 2016, 88, 3926–3934. DOI: 10.1021/acs.analchem.6b00115.
  • Yang, D.; Mo, W.; Zhang, S.; Li, B.; Hu, D.; Chen, S. A Graphene Oxide Functionalized Energetic Coordination Polymer Possesses Good Thermostability, Heat Release and Combustion Catalytic Performance for Ammonium Perchlorate. Dalton. Trans. 2020, 49, 1582–1590. DOI: 10.1039/C9DT03491A. DOI:
  • Yang, F.; Pei, J.; Zhao, H. First-Principles Investigation of Graphene and Fe2O3 Catalytic Activity for Decomposition of Ammonium Perchlorate. Langmuir. 2022, 38, 3844–3851. DOI: 10.1021/acs.langmuir.2c00027.
  • Ju, Z.; Zhang, S.; Xing, Z.; Zhuang, Q.; Qiang, Y.; Qian, Y. Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. ACS Appl. Mater. Interfaces. 2016, 8, 20682–20690. DOI: 10.1021/acsami.6b04763.
  • Zhang, H.; Kuila, T.; Kim, N. H.; Yu, D. S.; Lee, J. H. Simultaneous Reduction, Exfoliation, and Nitrogen Doping of Graphene Oxide via a Hydrothermal Reaction for Energy Storage Electrode Materials. Carbon. 2014, 69, 66–78. DOI: 10.1016/j.carbon.2013.11.059.
  • Kechit, H.; Belkhiri, S.; Bhakta, A. K.; Trache, D.; Mekhalif, Z.; Tarchoun, A. F. The Effect of Iron Decorated MWCNTs and Iron-Ionic Liquid Decorated MWCNTs onto Thermal Decomposition of Ammonium Perchlorate. Z. Anorg. Allg. Chem. 2021, 647, 1607–1619. DOI: 10.1002/zaac.202100153.
  • Boldyrev, V. V. Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta. 2006, 443, 1–36. DOI: 10.1016/j.tca.2005.11.038.
  • Hunter, S.; Davidson, A. J.; Morrison, C. A.; Pulham, C. R.; Richardson, P.; Farrow, M. J.; Marshall, W. G.; Lennie, A. R.; Gould, P. J. Combined Experimental and Computational Hydrostatic Compression Study of Crystalline Ammonium Perchlorate. J. Phys. Chem. C. 2011, 115, 18782–18788. DOI: 10.1021/jp2012599.
  • Ríos, P. L.; Povea, P.; Cerda-Cavieres, C.; Arroyo, J. L.; Morales-Verdejo, C.; Abarca, G.; Camarada, M. B. Novel in Situ Synthesis of Copper Nanoparticles Supported on Reduced Graphene Oxide and Its Application as a New Catalyst for the Decomposition of Composite Solid Propellants. RSC Adv. 2019, 9, 8480–8489. DOI: 10.1039/C9RA00789J.
  • Wang, W. R.; Guo, S. S.; Zhang, D. X.; Zhi, Y. One-Pot Hydrothermal Synthesis of Reduced Graphene Oxide/Zinc Ferrite Nanohybrids and Its Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. J. Saudi. Chem. Soc. 2019, 23, 133–140. DOI: 10.1016/j.jscs.2018.05.001.
  • Chen, T.; Du, P.; Jiang, W.; Liu, J.; Hao, G. Z.; Gao, H.; Xiao, L.; Ke, X.; Zhao, F. Q.; Xuan, C. L. A Facile One-Pot Solvothermal Synthesis of CoFe2O4/RGO and Its Excellent Catalytic Activity on Thermal Decomposition of Ammonium Perchlorate. RSC Adv. 2016, 6, 83838–83847. DOI: 10.1039/c6ra16448j1.
  • Liu, H. Y.; Guo, Z. L.; Zhang, Q. C.; Jin, B.; Peng, R. F. Zeolite Imidazolate Frameworks-67 Precursor to Fabricate a Highly Active Cobalt-Embedded N-Doped Porous Graphitized Carbon Catalyst for the Thermal Decomposition of Ammonium Perchlorate. ACS Omega. 2021, 6, 25440–25446. DOI: 10.1021/acsomega.1c03427.
  • Zhou, T. T.; Qi, X. F.; Ma, Y. J.; Pei, C. H.; Duan, X. H.; Wu, B. Multichanneled Hierarchical Porous Nanocomposite CuO/Carbonized Butterfly Wing and Its Excellent Catalytic Performance for Thermal Decomposition of Ammonium Perchlorate. Appl. Organomet. Chem. 2020, 34, 8. DOI: 10.1002/aoc.5730.
  • Longuet, B.; Gillard, P. Experimental Investigation on the Heterogeneous Kinetic Process of the Low Thermal Decomposition of Ammonium Perchlorate Particles. Prop., Explos., Pyrotech. 2009, 34, 59–71. DOI: 10.1002/prep.2007002032.
  • Benhammada, A.; Trache, D. Thermal Decomposition of Energetic Materials Using TG-FTIR and TG-MS: A State-of-the-Art Review. Appl. Spectrosc. Rev. 2020, 55, 724–777. DOI: 10.1080/05704928.2019.1679825.
  • Mallick, L.; Kumar, S.; Chowdhury, A. Thermal Decomposition of Ammonium Perchlorate-a TGA-FTIR-MS Study: Part I. Thermochim. Acta. 2015, 610, 57–68. DOI: 10.1016/j.tca.2015.04.025.
  • Wei, Y.; Xu, L.; Tao, Y.; Yao, C.; Xue, H.; Kong, Y. Electrosorption of Lead Ions by Nitrogen-Doped Graphene Aerogels via One-Pot Hydrothermal Route. Ind. Eng. Chem. Res. 2016, 55, 1912–1920. DOI: 10.1021/acs.iecr.5b04142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.