142
Views
3
CrossRef citations to date
0
Altmetric
Articles

Functionalization of unzipped multi-walled carbon nanotube oxides with l-tyrosine for the adsorption of methylene blue

, , & ORCID Icon
Pages 1199-1206 | Received 15 May 2022, Accepted 26 May 2022, Published online: 14 Jun 2022

References

  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Durán-Jiménez, G.; Hernández-Montoya, V.; Montes-Morán, M. A.; Bonilla-Petriciolet, A.; Rangel-Vázquez, N. A. Adsorption of Dyes with Different Molecular Properties on Activated Carbons Prepared from Lignocellulosic Wastes by Taguchi Method. Micropor. Mesopor. Mater. 2014, 199, 99–107. DOI: 10.1016/j.micromeso.2014.08.013.
  • Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Hayati, B.; Mahmoodi, N. M. Modification of Activated Carbon by the Alkaline Treatment to Remove the Dyes from Wastewater: Mechanism, Isotherm and Kinetic. Desalin. Water Treat. 2012, 47, 322–333. DOI: 10.1080/19443994.2012.696429.
  • Mahmoodi, N. M.; Sadeghi, U.; Maleki, A.; Hayati, B.; Najafi, F. Synthesis of Cationic Polymeric Adsorbent and Dye Removal Isotherm, Kinetic and Thermodynamic. J. Ind. Eng. Chem. 2014, 20, 2745–2753. DOI: 10.1016/j.jiec.2013.11.002.
  • Ayranci, E.; Duman, O. In-Situ UV–Visible Spectroscopic Study on the Adsorption of Some Dyes onto Activated Carbon Cloth. Sep. Sci. Technol. 2009, 44, 3735–3752. DOI: 10.1080/01496390903182891.
  • Mahmoodi, N. M.; Limaee, N. Y.; Arami, M.; Borhany, S.; Mohammad-Taheri, M. Nanophotocatalysis Using Nanoparticles of Titania. Mineralization and Finite Element Modelling of Solophenyl Dye Decolorization. J. Photochem. Photobiol. A Chem. 2007, 189, 1–6. DOI: 10.1016/j.jphotochem.2006.12.025.
  • Mahmoodi, N. M. Photocatalytic Degradation of Dyes Using Carbon Nanotube and Titania Nanoparticle. Water Air Soil Pollut. 2013, 224:1612, 1–8. DOI: 10.1007/s11270-013-1612-3.
  • Oveisi, M.; Mahmoodi, N. M.; Asli, M. A. Facile and Green Synthesis of Metal-Organic Framework/Inorganic Nanofiber Using Electrospinning for Recyclable Visible-Light Photocatalysis. J. Clean. Prod. 2019, 222, 669–684. DOI: 10.1016/j.jclepro.2019.03.066.
  • Mahmoodi, N. M.; Arabloo, M.; Abdi, J. Laccase Immobilized Manganese Ferrite Nanoparticle: Synthesis and LSSVM Intelligent Modeling of Decolorization. Water Res. 2014, 67, 216–226. DOI: 10.1016/j.watres.2014.09.011.
  • Mohajershojaei, K.; Mahmoodi, N. M.; Khosravi, A. Immobilization of Laccase Enzyme onto Titania Nanoparticle and Decolorization of Dyes from Single and Binary Systems. Biotechnol. Bioprocess Eng. 2015, 20, 109–116. DOI: 10.1007/s12257-014-0196-0.
  • Mahmoodi, N. M.; Saffar-Dastgerdi, M. H.; Hayati, B. Environmentally Friendly Novel Covalently Immobilized Enzyme Bionanocomposite: From Synthesis to the Destruction of Pollutant. Compos. Part B Eng. 2020, 184, 107666. DOI: 10.1016/j.compositesb.2019.107666.
  • Siddiqui, S. I.; Rathi, G.; Chaudhry, S. A. Acid Washed Black Cumin Seed Powder Preparation for Adsorption of Methylene Blue Dye from Aqueous Solution: Thermodynamic, Kinetic and Isotherm Studies. J. Mol. Liq. 2018, 264, 275–284. DOI: 10.1016/j.molliq.2018.05.065.
  • Nassar, M. M. Energy Consumption and Mass Transfer during Adsorption Using Gas and Mechanical Stirring Systems. Water Res. 1998, 32, 3071–3079. DOI: 10.1016/S0043-1354(98)00074-8.
  • Ho, Y. S.; Chiang, C. C.; Hsu, Y. C. Sorption Kinetics for Dye Removal from Aqueous Solution Using Activated Clay. Sep. Sci. Technol. 2001, 36, 2473–2488. DOI: 10.1081/SS-100106104.
  • Dutta, S.; Gupta, B.; Srivastava, S. K.; Gupta, A. K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. DOI: 10.1039/D1MA00354B.
  • Gong, J. L.; Wang, B.; Zeng, G. M.; Yang, C. P.; Niu, C. G.; Niu, Q. Y.; Zhou, W. J.; Liang, Y. Removal of Cationic Dyes from Aqueous Solution Using Magnetic Multi-Wall Carbon Nanotube Nanocomposite as Adsorbent. J. Hazard. Mater. 2009, 164, 1517–1522. DOI: 10.1016/j.jhazmat.2008.09.072.
  • Dwivedi, P.; Vijayakumar, R. P. Synthesis of UMCNOs from MWCNTs and Analysis of Its Structure and Properties for Wastewater Treatment Applications. Appl. Nanosci. 2018, 8, 1989–2000. DOI: 10.1007/s13204-018-0868-8.
  • Cataldo, F.; Compagnini, G.; D'Urso, L.; Palleschi, G.; Valentini, F.; Angelini, G.; Braun, T. Characterization of Graphene Nanoribbons from the Unzipping of MWCNTs. Fullerenes Nanotub. Carbon Nanostruct. 2010, 18, 261–272. DOI: 10.1080/15363831003782981.
  • Valentini, F.; Persichetti, L.; Sgarlata, A.; Balzarotti, A.; Palleschi, G. Morphological and Electronic Characterization of Functionalized Graphene Nanoribbons Obtained by the Unzipping of Single-Wall Carbon Nanotubes: A Scanning Tunneling Microscopy Study. Fullerenes Nanotub. Carbon Nanostruct. 2013, 21, 302–310. DOI: 10.1080/1536383X.2011.613535.
  • Xiao, B.; Li, X.; Li, X.; Wang, B.; Langford, C.; Li, R.; Sun, X. Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. J. Phys. Chem. C 2014, 118, 881–890. DOI: 10.1021/jp410812v.
  • Baburao Upare, V.; Chaudhary, A. K.; Chaitanya, K.; Vijayakumar, R. P. Synthesis of Unzipped Multi-Walled Carbon Nanotube Oxides Coated Polyurethane Foam and Its Application in Wastewater Treatment. Fullerenes Nanotub.. Carbon Nanostruct. 2021, 29, 375–385. DOI: 10.1080/1536383X.2020.1843442.
  • Zhang, Z.; Zhao, X.; Jv, X.; Lu, H.; Zhu, L. A Simplified Method for Synthesis of l -Tyrosine Modified Magnetite Nanoparticles and Its Application for the Removal of Organic Dyes. J. Chem. Eng. Data 2017, 62, 4279–4287. DOI: 10.1021/acs.jced.7b00637.
  • Saxena, M.; Sharma, N.; Saxena, R. Highly Efficient and Rapid Removal of a Toxic Dye : Adsorption Kinetics, Isotherm, and Mechanism Studies on Functionalized Multiwalled Carbon Nanotubes. Surf. Interfaces 2020, 21, 100639. DOI: 10.1016/j.surfin.2020.100639.
  • Mahmoodi, N. M.; Hayati, B.; Arami, M. Textile Dye Removal from Single and Ternary Systems Using Date Stones: Kinetic, Isotherm, and Thermodynamic Studies. J. Chem. Eng. Data 2010, 55, 4638–4649. DOI: 10.1021/je1002384.
  • Mall, I. D.; Srivastava, V. C.; Agarwal, N. K. Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash – Kinetic Study and Equilibrium Isotherm Analyses. Dye Pigm. 2006, 69, 210–223. DOI: 10.1016/j.dyepig.2005.03.013.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. DOI: 10.1061/JSEDAI.0000430.
  • Kuo, C. Y.; Wu, C. H.; Wu, J. Y. Adsorption of Direct Dyes from Aqueous Solutions by Carbon Nanotubes: Determination of Equilibrium, Kinetics and Thermodynamics Parameters. J. Colloid Interface Sci. 2008, 327, 308–315. DOI: 10.1016/j.jcis.2008.08.038.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Deng, H.; Yang, L.; Tao, G.; Dai, J. Preparation and Characterization of Activated Carbon from Cotton Stalk by Microwave Assisted Chemical Activation-Application in Methylene Blue Adsorption from Aqueous Solution. J. Hazard. Mater. 2009, 166, 1514–1521. DOI: 10.1016/j.jhazmat.2008.12.080.
  • Neag, E.; Malschi, D.; Măicăneanu, A. Isotherm and Kinetic Modelling of Toluidine Blue (TB) Removal from Aqueous Solution Using Lemna Minor. Int. J. Phytoremediat. 2018, 20, 1049–1054. DOI: 10.1080/15226514.2018.1460304.
  • Feng, M.; Yu, S.; Wu, P.; Wang, Z.; Liu, S.; Fu, J. Rapid, High-Efficient and Selective Removal of Cationic Dyes from Wastewater Using Hollow Polydopamine Microcapsules: Isotherm, Kinetics, Thermodynamics and Mechanism. Appl. Surf. Sci. 2021, 542, 148633. DOI: 10.1016/j.apsusc.2020.148633.
  • Saxena, M.; Lochab, A.; Saxena, R. Asparagine Functionalized MWCNTs for Adsorptive Removal of Hazardous Cationic Dyes: Exploring Kinetics, Isotherm and Mechanism. Surf. Interfaces 2021, 25, 101187. DOI: 10.1016/j.surfin.2021.101187.
  • Wang, H.; Wang, Y.; Hu, Z.; Wang, X. Cutting and Unzipping Multiwalled Carbon Nanotubes into Curved Graphene Nanosheets and Their Enhanced Supercapacitor Performance. ACS Appl. Mater. Interfaces 2012, 4, 6827–6834. DOI: 10.1021/am302000z.
  • Abdolkarimi-Mahabadi, M.; Manteghian, M. Chemical Oxidation of Multi-Walled Carbon Nanotube by Sodium Hypochlorite for Production of Graphene Oxide Nanosheets. Fullerenes Nanotub. Carbon Nanostruct. 2015, 23, 860–864. DOI: 10.1080/1536383X.2015.1016608.
  • Selen, V.; Güler, Ö.; Özer, D.; Evin, E. Synthesized Multi-Walled Carbon Nanotubes as a Potential Adsorbent for the Removal of Methylene Blue Dye: Kinetics, Isotherms, and Thermodynamics. Desalin. Water Treat. 2016, 57, 8826–8838. DOI: 10.1080/19443994.2015.1025851.
  • Huan, Y.; Wang, G.; Li, C.; Li, G. Acrylic Acid Grafted-Multi-Walled Carbon Nanotubes and Their High -Efficiency Adsorption of Methylene Blue. J. Mater. Sci. 2020, 55, 4656–4670. DOI: 10.1007/s10853-019-04167-3.
  • Zhao, D.; Zhang, W.; Chen, C.; Wang, X. Adsorption of Methyl Orange Dye onto Multiwalled Carbon Nanotubes. Procedia Environ. Sci. 2013, 18, 890–895. DOI: 10.1016/j.proenv.2013.04.120.
  • Dotto, G. L.; Santos, J. M. N.; Rodrigues, I. L.; Rosa, R.; Pavan, F. A.; Lima, E. C. Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin. J. Colloid Interface Sci. 2015, 446, 133–140. DOI: 10.1016/j.jcis.2015.01.046.
  • Boukhalfa, N.; Boutahala, M.; Djebri, N.; Idris, A. Idris, A. Maghemite/Alginate/Functionalized Multiwalled Carbon Nanotubes Beads for Methylene Blue Removal: Adsorption and Desorption Studies. J. Mol. Liq. 2019, 275, 431–440. DOI: 10.1016/j.molliq.2018.11.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.