171
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of SiC/graphene nanocomposites by atmospheric plasmas for improving efficient of microwave absorption

, , , &
Pages 1212-1220 | Received 15 Apr 2022, Accepted 26 May 2022, Published online: 06 Jun 2022

References

  • Green, M.; Chen, X. B. Recent Progress of Nanomaterials for Microwave Absorption. J. Materiomics, 2019, 5, 503–541. DOI: 10.1016/j.jmat.2019.07.003.
  • Liu, T. T.; Cao, M. Q.; Fang, Y. S.; Zhu, Y.-H.; Cao, M.-S. Green Building Materials Lit up by Electromagnetic Absorption Function: A Review. J. Mater. Sci. Technol. 2022, 112, 329–344. DOI: 10.1016/j.jmst.2021.10.022.
  • Hu, H.; Wang, X.; Xu, C.; Wang, J.; Wan, L.; Zhang, M.; Shang, X. Microwave-Assisted Synthesis of Graphene Nanosheets-Gold Nanocomposites with Enhancing Electrochemical Response. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 31–40. DOI: 10.1080/1536383X.2010.533307.
  • Meer, S.; Kausar, A.; Iqbal, T. Synthesis of Multi-Walled Carbon Nanotube/Silica Nanoparticle/Polystyrene Microsphere/Polyaniline Based Hybrids for EMI Shielding Application. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 507–519. DOI: 10.1080/1536383X.2016.1195816.
  • Zhou, Z. H.; Wang, Z. H.; Yi, Y.; Jiang, S. Q.; Wang, G. Microwave Absorption and Mechanical Properties of beta-Sic-C Structure-Function Composites Prepared by Liquid Phase Sintering. Mater. Lett. 2013, 112, 66–68. DOI: 10.1016/j.matlet.2013.08.117.
  • Li, Q.; Yin, X. W.; Duan, W. Y.; Kong, L.; Liu, X. M.; Cheng, L. F.; Zhang, L. T. Improved Dielectric and Electromagnetic Interference Shielding Properties of Ferrocene-Modified Polycarbosilane Derived SiC/C Composite Ceramics. J. Eur. Ceram. Soc. 2014, 34, 2187–2201. DOI: 10.1016/j.jeurceramsoc.2014.02.010.
  • Maurya, A. K.; Mr, S.; Singh, S.; Kumar, A. Microwave Absorption Performance of Graphene Nanoplatelets Dispersed SiC. Def. Sci. J. 2019, 69, 437–441. DOI: 10.14429/dsj.69.14947.
  • Du, B.; Qian, J. J.; Hu, P.; He, C.; Cai, M.; Wang, X.; Shui, A. Z. Fabrication of C-Doped SiC Nanocomposites with Tailoring Dielectric Properties for the Enhanced Electromagnetic Wave Absorption. Carbon 2020, 157, 788–157795. DOI: 10.1016/j.carbon.2019.10.029.
  • Hou, Y. H.; Yuan, H. L.; Qu, X. L.; Chen, H.; Li, L. C. Synthesis and High-Performance Electromagnetic Wave Absorption of SiC@C Composites. Mater. Lett. 2017, 209, 90–93. DOI: 10.1016/j.matlet.2017.07.114.
  • Zhou, J.; Wang, C.; Song, M.; Chen, X.; Xia, W. Simple Synthesis of Ultrafine Amorphous Silicon Carbide Nanoparticles by Atmospheric Plasmas. Mater. Lett. 2021, 299, 130072. DOI: 10.1016/j.matlet.2021.130072.
  • Wang, C.; Zhou, J. W.; Song, M.; Chen, X. H.; Zheng, Y.; Xia, W. D. Modification of Plasma-Generated SiC Nanoparticles by Heat Treatment under Air Atmosphere. J. Alloy. Compd. 2022, 900, 163507. DOI: 10.1016/j.jallcom.2021.163507.
  • Krasovskii, P. V.; Samokhin, A. V.; Kirpichev, D. E.; Sigalaev, S. K.; Sirotinkin, V. P. Carbon Forms, Carbide Yield and Impurity-Driven Nonstoichiometry of Plasma-Generated β-Silicon Carbide Nanopowders. Mater. Chem. Phys. 2020, 253, 123077. DOI: 10.1016/j.matchemphys.2020.123077.
  • Wang, C.; Sun, L.; Dai, X.; Li, D.; Chen, X.; Xia, W.; Xia, W. Continuous Synthesis of Graphene Nano-Flakes by Magnetically Rotating Arc at Atmospheric Pressure. Carbon 2019, 148, 394–402. DOI: 10.1016/j.carbon.2019.04.015.
  • Wang, C.; Sun, L.; Chen, X.; Song, M.; Xia, W. Products on Electrodes in an Argon-Methane Magnetically Rotating Arc at Atmospheric Pressure, Fullerenes, Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 498–505. DOI: 10.1080/1536383X.2019.1612378.
  • Li, D.; Wang, C.; Lu, Z.; Song, M.; Xia, W.; Xia, W. Synthesis of Graphene Flakes Using a Non-Thermal Plasma Based on Magnetically Stabilized Gliding Arc Discharge. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 846–856. DOI: 10.1080/1536383X.2020.1774559.
  • Chen, X.; Wang, C.; Song, M.; Ma, J.; Ye, T.; Xia, W. The Morphological Transformation of Carbon Materials from Nanospheres to Graphene Nanoflakes by Thermal Plasmas. Carbon 2019, 155, 521–530. DOI: 10.1016/j.carbon.2019.08.077.
  • Song, M.; Wang, C.; Chen, X. H.; Ma, J.; Xia, W. D. Large-Scale in-Situ Synthesis of Nitrogen-Doped Graphene Using Magnetically Rotating Arc Plasma. Diam. Relat. Mater. 2021, 116, 108417. DOI: 10.1016/j.diamond.2021.108417.
  • Liu, R. Z.; Liu, M. L.; Chang, J. X. Large-Scale Synthesis of Monodisperse SiC Nanoparticles with Adjustable Size, Stoichiometric Ratio and Properties by Fluidized Bed Chemical Vapor Deposition. J. Nanopart. Res. 2017, 19, 26. DOI: 10.1007/s11051-016-3737-y.
  • Nemanich, R. J.; Solin, S. First-and Second-Order Raman Scattering from Finite-Size Crystals of Graphite. Phys. Rev. B 1979, 20, 392–401. DOI: 10.1103/PhysRevB.20.392.
  • Sun, D.; Hong, R.; Liu, J.; Wang, F.; Wang, Y. Preparation of Carbon Nanomaterials Using Two-Group Arc Discharge Plasma. Chem. Eng. J. 2016, 303, 217–230. DOI: 10.1016/j.cej.2016.05.098.
  • Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys Chem Chem Phys. 2007, 9, 1276–1290. DOI: 10.1039/b613962k.
  • Miettinen, M.; Johansson, M.; Suvanto, S.; Riikonen, J.; Tapper, U.; Pakkanen, T. T.; Lehto, V.-P.; Jokiniemi, J.; Lähde, A. Atmospheric Pressure Chemical Vapour Synthesis of Silicon–Carbon Nanoceramics from Hexamethyldisilane in High Temperature Aerosol Reactor. J Nanopart Res. 2011, 13, 4631–4645. DOI: 10.1007/s11051-011-0427-7.
  • Kumar, R.; Singh, R. K.; Dubey, P. K.; Kumar, P.; Tiwari, R. S.; Oh, I. K. Pressure-Dependent Synthesis of High-Quality Few-Layer Graphene by Plasma-Enhanced Arc Discharge and Their Thermal Stability. J. Nanopart. Res. 2013, 15, 1847. DOI: 10.1007/s11051-013-1847-3.
  • Ramachandran, M.; Reddy, R. G. Thermal Plasma Synthesis of SiC. Adv. Manuf. 2013, 1, 50–61. DOI: 10.1007/s40436-013-0011-8.
  • Kamble, M. M.; Waman, V. S.; Mayabadi, A. H.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Shripathi, T.; et al. Hydrogenated Silicon Carbide Thin Films Prepared with High Deposition Rate by Hot Wire Chemical Vapor Deposition Method. J. Coat. Technol. 2014, 2014, 1–11. DOI: 10.1155/2014/905903.
  • Liu, W.; Li, Q.; Yang, X.; Chen, X.; Xu, X. Synthesis and Characterization of N-Doped SiC Powder with Enhanced Photocatalytic and Photoelectrochemical Performance. Catalysts 2020, 10, 769. DOI: 10.3390/catal10070769.
  • Zhang, M.; Zhao, J.; Li, Z. J.; Ding, S. Q.; Wang, Y. Q.; Qiu, G. H.; Meng, A.; Li, Q. D. Ultralong SiC/SiO2 Nanowires: Simple Gram-Scale Production and Their Effective Blue-Violet Photoluminescence and Microwave Absorption Properties. ACS Sustainable Chem. Eng. 2018, 6, 3596–3603. DOI: 10.1021/acssuschemeng.7b03908.
  • Li, B. B.; Mao, B. X.; Huang, H. Q.; Wang, X. B.; He, T. Synthesis and Microwave Absorption Properties of Bamboo-like beta-SiC Nanowires. Int. J. Appl. Ceram. Technol. 2020, 17, 1869–1881. DOI: 10.1111/ijac.13516.
  • Nisha, M. S.; Krishna, J. A.; Kumar, P. S.; Ramprabhu, S. Process Intensified Microwave Absorption Nanocomposite for Stealth Application. Chem. Eng. Process. 2021, 163, 108333. DOI: 10.1016/j.cep.2021.108333.
  • Nisha, M. S.; Krishna, J. A.; Singh, D. Experimental Study on Electromagnetic Shielding Property of Silicon Carbide-Graphene Nanoparticles at x-Band. Renew. Energy Sources Technol. 2019, 2161. 020052. DOI: 10.1063/1.5127643.
  • Jiang, Y.; Chen, Y.; Liu, Y. J.; Sui, G. X. Lightweight Spongy Bone-like Graphene@SiC Aerogel Composites for High-Performance Microwave Absorption. Chem. Eng. J. 2018, 337, 522–531. DOI: 10.1016/j.cej.2017.12.131.
  • Zhao, D.; Yuan, X. Y.; Li, B. B.; Jiang, F.; Liu, Y.; Zhang, J. Y.; Niu, C. M.; Guo, S. W. Silicon Carbide Nanowire Covered by Vertically Oriented Graphene for Enhanced Electromagnetic Wave Absorption Performance. Chem. Phys. 2020, 529, 110574. DOI: 10.1016/j.chemphys.2019.110574.
  • Han, C.; Zhang, M.; Cao, W. Q.; Cao, M. S.; Electrospinning, In Situ Hierarchical Thermal Treatment to Tailor C-NiCo2O4 Nanofibers for Tunable Microwave Absorption. Carbon 2021, 171, 953–962. DOI: 10.1016/j.carbon.2020.09.067.
  • Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-Tailoring Dielectric "Genes" in Graphene-Based Heterostructure to Manipulate Electromagnetic Response. Carbon 2021, 184, 136–145. DOI: 10.1016/j.carbon.2021.07.099.
  • Lv, H.; Zhou, X.; Wu, G.; Kara, U. I.; Wang, X. Engineering Defects in 2D g-C3N4 for Wideband, Efficient Electromagnetic Absorption at Elevated Temperature. J. Mater. Chem. A 2021, 9, 19710–19718. DOI: 10.1039/D1TA02785A.
  • Deng, L.; Zhang, J.; Shu, R. Fabrication of Three-Dimensional Nitrogen-Doped Reduced Graphene Oxide/Tin Oxide Composite Aerogels as High-Performance Electromagnetic Wave Absorbers. J. Colloid Interf. Sci. 2021, 602, 282–290. DOI: 10.1016/j.jcis.2021.06.029.
  • Shu, R.; Zhang, J.; Wu, Y.; Wan, Z.; Li, X. Synthesis of Nitrogen-Doped Reduced Graphene Oxide/Cobalt-Zinc Ferrite Composite Aerogels with Superior Compression Recovery and Electromagnetic Wave Absorption Performance. Nanoscale 2021, 13, 4485–4495. DOI: 10.1039/d0nr08777g.
  • Zhang, H. Y.; Xu, Y. J.; Zhou, J. G.; Jiao, J. F.; Chen, Y. J.; Wang, H.; Liu, C. Y.; Jiang, Z. H.; Wang, Z. J. Stacking Fault and Unoccupied Densities of State Dependence of Electromagnetic Wave Absorption in SiC Nanowires. J. Mater. Chem. C 2015, 3, 4416–4423. DOI: 10.1039/C5TC00405E.
  • Song, W. L.; Cao, M. S.; Hou, Z. L.; Fang, X. Y.; Shi, X. L.; Yuan, J. High Dielectric Loss and its Monotonic Dependence of Conducting-Dominated Multiwalled Carbon Nanotubes/Silica Nanocomposite on Temperature Ranging from 373 to 873 K in X-Band. Appl. Phys. Lett. 2009, 94, 233110. DOI: 10.1063/1.3152764.
  • Song, W. L.; Cao, M. S.; Lu, M. M.; Liu, J.; Yuan, J.; Fan, L. Z. Improved Dielectric Properties and Highly Efficient and Broadened Bandwidth Electromagnetic Attenuation of Thickness-Decreased Carbon Nanosheet/Wax Composites. J. Mater. Chem. C 2013, 1, 1846–1854. DOI: 10.1039/c2tc00494a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.