193
Views
1
CrossRef citations to date
0
Altmetric
Articles

Research on the carbonation resistance of concretes containing dolomite powder

, & ORCID Icon
Pages 1221-1232 | Received 16 Apr 2022, Accepted 26 May 2022, Published online: 04 Jun 2022

References

  • Shi, Q.; Wu, F.; Hua, T. F. Influenced Research of Fine Mineral Mixture on the Properties of Decoration Mortar. Bull. Chin. Ceram. Soc. 2013, 32, 2490–2494.
  • Selcuk, T.; Yigit, A. The Effect of Limestone Powder, Fly Ash and Silica Fume on the Properties of Self-Compacting Repair Mortars. Sadehana 2009, 34, 331–343.
  • Chen, Y. M.; He, X. Y.; Li, Y. X.; Su, Y. Research Progress and Shortcoming of Mineral Admixtures. Mater. Rep. 2006, 20, 28–31.
  • Dixit, A.; Du, H. J.; Dang, J. T.; Pang, S. d. Quaternary Blended Limestone-Calcined Clay Cement Concrete Incorporating Fly Ash. Cem. Concr. Compos. 2021, 123, 104174. DOI: 10.1016/j.cemconcomp.2021.104174.
  • Dang, J. T.; Du, H. J.; Pang, S. D. Hydration, Strength and Microstructure Evaluation of Eco-Friendly Mortar Containing Waste Marine Clay. J. Clean. Prod. 2020, 272, 122784. DOI: 10.1016/j.jclepro.2020.122784.
  • Xie, Q.; Chen, X. P.; Wen, L. Y. Development Status and Prospect of Mineral Admixtures in Cement Mortar. Concrete 2016, 3, 89–93.
  • Guo, Y. X.; Gong, J. X.; Li, J. Influence of Mass Fractions of Limestone Powder on Mechanical Property and Durability of Concrete. J. Build. Mater. 2009, 12, 266–271.
  • Liu, C. H.; Wu, T. Effect of Multi-Mineral Admixtures on the Dry Shrinkage of Cement-Ground Dolomite Cementitious Materials. Non Met. Mines 2018, 41, 92–94.
  • Machner, A.; Zajac, M.; Haha, M. B.; Kjellsen, K. O.; Geiker, M. R.; Weerdt, K. D. Limitations of the Hydrotalcite Formation in Portland Composite Cement Pastes Containing Dolomite and Metakaolin. Cem. Concr. Res. 2018, 105, 1–17. DOI: 10.1016/j.cemconres.2017.11.007.
  • Krishnan, S.; Bishnoi, S. Understanding the Hydration of Dolomite in Cementitious Systems with Reactive Aluminosilicates Such as Calcined Clay. Cem. Concr. Res. 2018, 108, 116–128. DOI: 10.1016/j.cemconres.2018.03.010.
  • Xu, J. T.; Chen, J. W.; Lu, D. Y.; Xu, Z. Z.; Hooton, R. D. Effect of Dolomite Powder on the Hydration and Properties of Calcium Sulfoaluminate Cements with Different Gypsum Contents. Constr. Build. Mater. 2019, 225, 302–310. DOI: 10.1016/j.conbuildmat.2019.07.050.
  • Zhang, X.; Luo, Y.; Yao, W. Effects of Dolomite Powder on the Properties of C30 and C50 Concretes. Fuller. Nanotub. Carbon Nanostruct. In press. DOI: 10.1080/1536383X.2022.2035363. Published Online: 09 Feb, 2022.
  • Zhang, X.; Wei, Y. Q.; Zuo, J. Q.; Luo, Y.; Wang, B. Y.; Yao, W. Evolution of Hydration Process of Cement-Based Material Containing High Volume of Dolomite Powder. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 343–351. DOI: 10.1080/1536383X.2020.1842739.
  • Gali, S.; Ayora, C.; Alfonso, P.; Tauler, E.; Labrador, M. Kinetics of Dolomite-Portlandite Reaction: Application to Portland Cement Concrete. Cem. Concr. Res. 2001, 31, 933–939. DOI: 10.1016/S0008-8846(01)00499-9.
  • Stukovnik, P.; Princic, T.; Pejovnik, R. S.; Bosiljkov, V. B. Alkali-Carbonate Reaction in Concrete and Its Implications for a High Rate of Long-Term Compressive Strength Increase. Constr. Build. Mater. 2014, 50, 699–709. DOI: 10.1016/j.conbuildmat.2013.10.007.
  • Fan, W.; Zuo, S. H.; Wang, D. F. The Role of Ground Dolomite on the Dimensional Stability of Cement Mortar. Non Met. Mines 2018, 41, 32–34.
  • Machner, A.; Zajac, M.; Haha, M. B.; Kjellsen, K. O.; Geiker, M. R.; Weerdt, K. D. Portland Metakaolin Cement Containing Dolomite or limestone-Similarities and Differences in Phase Assemblage and Compressive Strength. Constr. Build. Mater. 2017, 157, 214–225. DOI: 10.1016/j.conbuildmat.2017.09.056.
  • Xu, J. T.; Lu, D. Y.; Zhang, S. H.; Zhong, Z. X.; Hooton, R. D. Reaction Mechanism of Dolomite Powder in Portland-Dolomite Cement. Constr. Build. Mater. 2021, 270, 121375. DOI: 10.1016/j.conbuildmat.2020.121375.
  • Barbhuiya, S. Effects of Fly Ash and Dolomite Powder on the Properties of Self-Compacting Concrete. Constr. Build. Mater. 2011, 25, 3301–3305. DOI: 10.1016/j.conbuildmat.2011.03.018.
  • Zhang, S. H.; Lu, D. Y.; Ling, K.; Xu, J. T.; Xu, Z. Z. Effects of Dolomite and Limestone Powders on Strength and Hydration of Cement Mortars. J. Chin. Ceram. Soc. 2016, 44, 1126–1133.
  • Tian, Z. Z.; Chen, D.; Zhang, Y.; Zhang, S. T.; Ren, F. C.; Xu, S. Y. Effect of Dolomite Powder Fineness on Hydration Properties of Dolomite-Cement. Non-Met. Mines 2021, 44, 11–14.
  • Yang, J. T. Study on the Influence of Dolomite Powder on the Basic Performance of Concrete and Its Resistance to Chloride Ion Attack; Jiangsu University: Jiangsu, 2021.
  • Jin, W. L.; Zhao, Y. X. Durability of Concrete Structures; Science Press: Beijing, 2002.
  • Papadakis, V. G.; Vayens, C. G.; Fardis, M. N. Fundamental Modeling and Experimental Investigation of Concrete Carbonation. Materials 1991, 88, 363–373.
  • Papadakis, V. G.; Vayenas, C. G.; Fardis, M. N. A Reaction Engineering Approach to the Problem of Concrete Carbonation. AIChE J. 1989, 35, 1639–1650. DOI: 10.1002/aic.690351008.
  • Papadakis, V. G.; Vayenas, C. G.; Fardis, M. N. Experimental Investigation and Mathematical Modeling of the Concrete Carbonation Problem. Chem. Eng. Sci. 1991, 46, 1333–1338. DOI: 10.1016/0009-2509(91)85060-B.
  • Yin, W.; Wei, W. J.; Wang, X. Y.; Zhu, N. The Analysis of Concrete Carbonated Shrinkage and Mechanism. Res. Explore 2014, 32, 31–35.
  • Guo, B.; Min, P. R.; Wang, G. B. Carbonation of Hydrated Calcium Silicates. J. Chin. Ceram. Soc. 1984, 12, 287–295.
  • Gonen, T.; Yazicioglu, S. The Influence of Compaction of Pores on Sorptivity and Carbonation of Concrete. Constr. Build. Mater. 2007, 21, 1040–1045. DOI: 10.1016/j.conbuildmat.2006.02.010.
  • Houst, Y. F.; Wittmann, F. H. Influence of Porosity and Water Content on the Diffusivity of CO2 and O2 through Hydrated Cement Paste. Cem. Concr. Res. 1994, 24, 1165–1176. DOI: 10.1016/0008-8846(94)90040-X.
  • Fang, j.; Mei, G. X.; Lu, C. R. Experimental Study on Main Factors Affecting Concrete Carbonization and Steel Rust (in Chinese). Concrete 1993, 2, 35–43.
  • Ma, W. H. Concrete Carbonization and Its Influence on the Corrosion of Reinforcing Steel (in Chinese). Low Temp. Archtect. Technol. 1986, 1, 27–32.
  • Miao, C. W.; Liu, J. P.; Liu, J. Z. Effect of Chemical Admixtures on Concrete Durability. J. Southeast Univ. (Natural Science Edition) 2006, 36, 253–258.
  • Feng, X. S.; Wang, Z. K.; Liu, X. J.; Kang, X. N.; Liu, Y. Carbonization Properties of Fly Ash Concrete under Different Cyclic Coupling Damage. J. Agric. Univ. Hebei 2020, 43, 127–132.
  • Xie, D. S. Study on the High Performance Concrete Carbonization and Correlative Capability; HoHai University: Jiangsu, 2005.
  • Hu, J. J. Studies on Carbonation Behavior of Concrete Mixed with Fly Ash and Granulated Blast Furnace Slag and Its Influencing Factors; Tsinghua University: Beijing, 2010.
  • Papadakis, V. G. Effect of Supplementary Cementing Materials on Concrete Resistance against Carbonation and Chloride Ingress. Cem. Concr. Res. 2000, 30, 291–299. DOI: 10.1016/S0008-8846(99)00249-5.
  • Zhu, A. M. Concrete Carbonization and Durability of Reinforced Concrete. Concretes 1992, 6, 18–22.
  • Xie, X. P. Testing Research on Freeze-Thaw and Carbonization of Steel-Fiber; Zheng zhou University: Zhengzhou, 2004.
  • Lesage, D. C. C. Deterioration and Repair. Bahrain Proc. 1995, 6, 467–483.
  • Zhang, Y.; Jiang, L. X. A Practical Mathematical Model of Concrete Carbonation Depth Based on the Mechanism. Ind. Architect., 28, 16–19.
  • Alekseyev. Corrosion and Protection of Reinforcement in Reinforced Concrete Structure (in Chinese); China architecture and building press: Beijing, 1983.
  • GB/T 50082-2009. Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete, 1st ed.; China Architecture and Building Press: Beijing, China, 2009.
  • Baroghel-Bouny, V.; Thiéry, M.; Wang, X. Performance Based Assessment of Durability and Prediction of RC Structure Service Life: Transport Properties as Input Data for Physical Models. Mater. Struct. 2014, 47, 1669–1691. DOI: 10.1617/s11527-013-0144-z.
  • Lin, P.; Wu, X. M.; Fan, Y. M.; Huang, Q. W. Effect of Wet-Curing Period on Carbonation Resistance of Concrete under Day-Cold Climate. Ind. Constr. 2009, 9, 99–102.
  • Lin, D.; Zhao, K. X.; Wang, H. C.; Liu, X. F.; Yang, Y. M. Evaluation of Service Life of Concrete with Different Strength Grades Based on Carbonation Factor (in Chinese). Guangdong Build. Mater. 2019, 8, 1–5.
  • Zhu, Z. Y.; Wang, Z. P.; Zhou, Y.; Cheng, Y. T.; Wu, K. In-Situ Study on Micro-Nano Structure of Portland Cement Hydration Products. J. Chin. Ceram. Soc. 2021, 49, 1699–1705.
  • Du, H.; Pang, S. D. Enhancement of Barrier Properties of Cement Mortar with Graphene Nanoplatelet. Cem. Concr. Res. 2015, 76, 10–19. DOI: 10.1016/j.cemconres.2015.05.007.
  • Li, R. J.; Diao, B. Analysis of Carbonation Service Life Prediction Model of Reinforced Concrete Structures. Concrete 2009, 232, 4–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.