120
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis of MWCNTs from xylenes for fabrication of highly electrically conductive and gas-sensitive polymer composites

, , , &
Pages 1233-1244 | Received 17 Apr 2022, Accepted 28 May 2022, Published online: 16 Jun 2022

References

  • Choi, H. J.; Park, S. J.; Kim, S. T.; Jhon, M. S. Electrorheological Application of Polyaniline/Multi-Walled Carbon Nanotube Composites. Diamond Relat. Mate.r 2005, 14, 766–769. DOI: 10.1016/j.diamond.2004.12.052.
  • Abdullayeva, S. H.; Huseynov, A. B.; Musayeva, N. N.; Jabbarov, R. B.; Sultanov, C. A.; Hasanov, R. F. Synthesis of Carbon Nanotubes Using Azerbaijan’s Oil. AMPC. 2016, 06, 105–116. DOI: 10.4236/ampc.2016.65011.
  • Yah, C. S.; Iyuke, S. E.; Simate, G. S.; Unuabonah, E. I.; Bathgate, G.; Matthews, G.; Cluett, J. D. Continuous Synthesis of Multiwalled Carbon Nanotubes from Xylene. J. Mater. Res. 2011, 26, 640–644. DOI: 10.1557/jmr.2010.69.
  • Rabbani, A. F. Synthesıs of Multıwall Carbon Nanotubes from p-Xylene and Ferrocene by Using Vertıcal Chemıcal Vapor Deposıtıon Reactor Fıtted Wıth an Ultrasonıc Atomızıng Head., 2015. Master Thesis, King Fahd University of Petroleum and Minerals: Saudi Arabia.
  • Makhmanov, U. K.; Kokhkharov, A. M.; Bakhramov, S. A.; Esanov, S. A.; Erts, D. Self-Assembly of C60 Fullerene Molecules in the Hexane–Xylene Solvent System. Fullerenes Nanotubes Carbon Nanostruct. 2022, 30, 80–84. DOI: 10.1080/1536383X.2021.1992390.
  • Kritchenkov, A. S.; Semenov, K. N.; Charykov, N. A. Synthesis, Identification, and Solubility of Adducts of Aldonitrones to Light Fullerenes in Toluene and O-Xylene. Fullerenes Nanotubes Carbon Nanostruct. 2015, 23, 355–360. DOI: 10.1080/1536383X.2014.913576.
  • Koprinarov, N. S.; Konstantinova, M. A. Carbon Structures Produced as a Result of Periodically Repeated Spark Discharge in Xylene. Fullerenes Nanotubes Carbon Nanostruct. 2012, 20, 463–467. DOI: 10.1080/1536383X.2012.655652.
  • Cataldo, F. Evidences about Carbyne Formation Together with Other Carbonaceous Material by Thermal Decomposition of Diiodoacetylene. Fullerene Sci. Technol. 2001, 9, 525–542. DOI: 10.1081/FST-100107154.
  • Mutlay, I.; Tudoran, L. B. Percolation Behavior of Electrically Conductive Graphene Nanoplatelets/Polymer Nanocomposites: Theory and Experiment. Fullerenes Nanotubes Carbon Nanostruct. 2014, 22, 413–433. DOI: 10.1080/1536383X.2012.684186.
  • Cataldo, F.; Ursini, O.; Lilla, E.; Angelini, G. A Comparative Study on the Reinforcing Effect of Aramide and PET Short Fibers in a Natural Rubber-Based Composite. J. Macromolecul Sci. 2009, 48, 1241–1251. DOI: 10.1080/00222340903061127.
  • Choi, C. S.; Park, B. J.; Choi, H. J. Electrical and Rheological Characteristics of Poly(Vinyl Acetate)/Multi-Walled Carbon Nanotube Nanocomposites. Diamond Related Mater. 2007, 16, 1170–1173. DOI: 10.1016/j.diamond.2006.11.075.
  • Wei, C.; Dai, L.; Roy, A.; Tolle, T. B. Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites. J. Am. Chem. Soc. 2006, 128, 1412–1413. DOI: 10.1021/ja0570335.
  • Sung, J. H.; Park, S. J.; Park, J. H.; Choi, H. J.; Choi, J. S. Characteristics of Poly(Vinyl Acetate) as a Gate Insulating Material in Organic Thin Film Transistors. Synth. Met. 2006, 156, 861–864. DOI: 10.1016/j.synthmet.2006.05.009.
  • Kaseem, M.; Hamad, K.; Ko, Y. G. Fabrication and Materials Properties of Polystyrene/Carbon Nanotube (PS/CNT) Composites: A Review. Eur. Polym. J. 2016, 79, 36–62. DOI: 10.1016/j.eurpolymj.2016.04.011.
  • Ilcikova, M.; Mrlik, M.; Sedlácek, T.; Minarik, A. Viscoelastic and Photo-Actuation Studies of Composites Based on Polystyrene-Grafted Carbon Nanotubes and Styrene-b-Isoprene-b-Styrene Block Copolymer. Polymer 2014, 55, 211–218. doi: 10.1016/j.polymer.2013.11.031
  • Peled, A.; Zaguri, E.; Marom, G. Bonding Characteristics of Multifilament Polymer Yarns and Cement Matrices. Compos. Part A-Appl. Sci. Manuf. 2008, 39, 930–939. DOI: 10.1016/j.compositesa.2008.03.012.
  • Nilasaroya, A.; Poole-Warren, L. A.; Whitelock, J. M.; Martens, P. Structural and Functional Characterisation of Poly (Vinyl Alcohol) and Heparin Hydrogels. Biomaterials 2008, 24, 4658–4664. doi:10.1016/j.biomaterials.2008.08.011
  • Minus, M. L.; Chae, H. G.; Kumar, S. Interfacial Crystallization in Gel Spun Poly (Vinyl Alcohol)/Single Wall Carbon Nanotube Composite Fibers. Macromol. Chem. Phys. 2009, 210, 1799–1808. DOI: 10.1002/macp.200900223.
  • Sarma, S.; Baruah, K.; Datta, P. 2010 Possible Applications of PVA/PbS Nanocomposites. AIP Conf. Proc.,1276, 316–326. DOI: 10.1063/1.3504318.
  • Badapanda, T.; Senthil, V.; Anwar, S.; Cavalcante, L. S.; Batista, N. C.; Longo, E. Structural and Dielectric Properties of Polyvinyl Alcohol/Barium Zirconium Titanate Polymer-Ceramic Composite. Curr. Appl. Phys. 2013, 13, 1490–1497. DOI: 10.1016/j.cap.2013.05.006.
  • Mitra, S.; Banerjee, S.; Chakravorty, D. Tunneling Conduction in Graphene/(Poly)Vinyl Alcohol Composite. J. Appl. Phys. 2013, 113, 154314. DOI: 10.1063/1.4802664.
  • Roy, A. S.; Gupta, S.; Sindhu, S.; Parveen, A.; Ramamurthy, P. C. Dielectric Properties of Novel PVA/ZnO Hybrid Nanocomposite Films. Compos. B 2013, 47, 314–319. DOI: 10.1016/j.compositesb.2012.10.029.
  • Mahmoud, W. E.; Al-Ghamdi, A. A. The Influence of Vanadium Pentoxide on the Structure and Dielectric Properties of Poly (Vinyl Alcohol). Polym. Int. 2010, 59, 1282–1288. DOI: 10.1002/pi.2866.
  • Bhadra, D.; Sannigrahi, J.; Chaudhuri, B. K.; Sakata, H. Enhancement of the Transport and Dielectric Properties of Graphite Oxide Nanoplatelets-Polyvinyl Alcohol Composite Showing Low Percolation Threshold. Polym. Compos. 2012, 33, 436–442. DOI: 10.1002/pc.22136.
  • Mahendia, S.; Tomar, A. K.; Kumar, S. Electrical Conductivity and Dielectric Spectroscopic Studies of PVA–Ag Nanocomposite Films. J. Alloys Compd. 2010, 508, 406–411. DOI: 10.1016/j.jallcom.2010.08.075.
  • Hassen, A.; El Sayed, A. M.; Morsi, W. M.; El-Sayed, S. Influence of Cr2O3 Nanoparticles on the Physical Properties of Polyvinyl Alcohol. J. Appl. Phys. 2012, 112, 093525. DOI: 10.1063/1.4764864.
  • Huseynov, A.; Israfilov, A.; Mammadova, S.; Abdullayeva, S.; Sokolov, S.; Goryunkov, A.; Guliyev, A. Fabrication and Characterization of MWCNT/Natural Azerbaijani Bentonite Electroconductive Ceramic Composites. J. Compos. Mater. 2019, 53, 3909–3923. DOI: 10.1177/0021998319848798.
  • Abdullayeva, S. A.; Huseynov, A. B.; Musayeva, N. N.; Jabbarov, R. B.; Sultanov, C. A.; Guliyev, A. D.; Hasanov, R. F. Carbon Nanotubes Dispersion in Polymers by Two-Factor Mechanical Method. AMPC. 2016, 06, 291–304. DOI: 10.4236/ampc.2016.611028.
  • Safadi, B.; Andrews, R.; Grulke, E. A. Multiwalled Carbon Nanotube Polymer Composites: synthesis and Characterization of Thin Films. J. Appl. Polym. Sci. 2002, 84, 2660–2669. DOI: 10.1002/app.10436.
  • Yoshino, K.; Kajii, H.; Araki, H.; Sonoda, T.; Take, H.; Lee, S. Electrical and Optical Properties of Conducting Polymer - Fullerene and Conducting Polymer. Carbon Nanotube Compos. Fullerene Sci. Technol. 1999, 7, 695–711. DOI: 10.1080/10641229909351371.
  • Kota, A. K.; Cipriano, B. H.; Duesterberg, M. K.; Gershon, A. L.; Powell, D.; Raghavan, S. R.; Bruck, H. A. Electrical and Rheological Percolation in Polystyrene/MWCNT Nanocomposites. Macromolecules 2007, 40, 7400–7406. DOI: 10.1021/ma0711792.
  • Mazinani, S.; Ajji, A.; Dubois, C. Morphology, Structure and Properties of Conductive PS/CNT Nanocomposite Electrospun Mat. Polymer 2009, 50, 3329–3342. DOI: 10.1016/j.polymer.2009.04.070.
  • Yu, J.; Lu, K.; Sourty, E.; Grossiord, N.; Koning, C. E.; Loos, J. Characterization of Conductive Multiwall Carbon Nanotube/Polystyrene Composites Prepared by Latex Technology. Carbon 2007, 45, 2897–2903. DOI: 10.1016/j.carbon.2007.10.005.
  • Sachdev, V.; Bhattacharya, S.; Patel, K.; Sharma, S. Electrical and EMI Shielding Characterization of Multiwalled Carbon Nanotube/Polystyrene Composites. J. Appl. Polym. Sci. 2014, 131. doi:10.1002/app.40201
  • Kažukauskas, V.; Kalendra, V.; Bumby, C. W.; Ludbrook, B. M.; Kaiser, A. B. Electrical Conductivity of Carbon Nanotubes and Polystyrene Composites. Phys. Status Solidi (c) 2008, 5, 3172–3174. DOI: 10.1002/pssc.200779193.
  • Zhang, B.; Fu, R. W.; Zhang, M. Q.; Dong, X. M.; Lan, P. L.; Qiu, J. S. Preparation and Characterization of Gas-Sensitive Composites from Multi-Walled Carbon Nanotubes/Polystyrene. Sens. Actuat. B 2005, 109, 323–328. DOI: 10.1016/j.snb.2004.12.066.
  • Jin, L.; Bower, C.; Zhou, O. Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching. Appl. Phys. Lett. 1998, 73, 1197–1199. DOI: 10.1063/1.122125.
  • Nasr, G. M.; Ashraf, S.; El-Haleem, A. A., Klingner, A.; Alnozahy, A. M.; Mourad, M. H. The DC Electrical Properties of Polyvinyl Alcohol/Multi-Walled Carbon Nanotube Composites. J. Multidiscipl. Eng. Sci. Technol. (JMEST) 2015, 2, 884–889.
  • Chakraborty, G.; Gupta, K.; Meikap, A. K.; Babu, R.; Blau, W. J. Anamalous Electrical Transport Properties of Polyvinil Alchohol-Multiwall Carbon Nanotubes Composites below Room Temperature. J. Appl. Phys. 2011, 109, 033707. DOI: 10.1063/1.3544204.
  • Amrin, S.; Deshpande, V. D. 2013 Electrical Conductivity of Polyvinyl Alcohol-Multiwall Carbon Nanotubes Composites. AIP Conference Proceedings, 197,1536–1545. 1063/1.4810168 DOI: 10.1063/1.4810168
  • Alharbi, N. D.; Shahnawaze Ansari, M.; Salah, N.; Khayyat, S. A.; Khan, Z. H. Zinc Oxide-Multi Walled Carbon Nanotubes Nanocomposites for Carbon Monoxide Gas Sensor Application. J. Nanosci. Nanotechnol. 2016, 16, 439–439. DOI: 10.1166/jnn.2016.10629.
  • Roy, N.; Sinha, R.; Daniel, T. T.; Nemade, H. B.; Mandal, T. K. Highly Sensitive Room Temperature CO Gas Sensor Based on MWCNT-PDDA Composite. IEEE Sensors J. 2020, 20, 13245–13252. DOI: 10.1109/JSEN.2020.3004994.
  • Zhang, W.-D.; Zhang, W.-H. Carbon Nanotubes as Active Components for Gas Sensors. J. Sens. 2009, 2009, 1–16. DOI: 10.1155/2009/160698.
  • Nguyen, L. Q.; Phan, P. Q.; Duong, H. N.; Nguyen, C. D.; Nguyen, L. H. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles. Sensors (Basel) 2013, 13, 1754–1762. DOI: 10.3390/s130201754.
  • Firouzi, A.; Sobri, S.; Yasin, F. M.; Ahmadun, F. 2011 Fabrication of Gas Sensors Based on Carbon Nanotube for CH4 and CO2 Detection. 2010 International Conference on Nanotechnology and Biosensors IPCBEE, Singapore, 165–168.
  • Shukla, P. Electrostatically Functionalized CVD Grown Multiwalled Carbon Nanotube/Palladium Nanocomposite (MWCNT/Pd) for CH4 Detection at Room Temperature. PREPRINT (Version 2) 2022, 1, 1–20. DOI: 10.21203/rs.3.rs-1512973/v2.
  • Zhang, J.; Zhu, Q.; Zhang, Y.; Zhu, Z.; Liu, Q. Methanol Gas-Sensing Properties of SWCNT-MIP Composites. Nanoscale Res Lett. 2016, 11, 522. DOI: 10.1186/s11671-016-1675-3.
  • Hamed, Y. M.; Maamon, A. F.; Nickesh, N. I.. Electrochemical Hydrazine Sensors Based on Graphene Supported Metal/Metal Oxide Nanomaterials. J. Electrochem. Soc. 2021, 168, 106509. doi: 10.1149/1945-7111/ac2ddc
  • Arduini, F.; Giorgio, F. D.; Amine, A.; Cataldo, F.; Moscone, D.; Palleschi, G. Electroanalytical Characterization of Carbon Black Nanomaterial Paste Electrode: Development of Highly Sensitive Tyrosinase Biosensor for Catechol Detection. Anal. Lett. 2010, 43, 1688–1702. DOI: 10.1080/00032711003653932.
  • https://iopscience.iop.org/journal/2058-8585/page/Focus-on-paper-electronics.
  • Sherjeel, M. K.; Nassar, J. M.; Hussain, M. M. Paper as a Substrate and an Active Material in Paper Electronics. ACS Appl. Electron. Mater. 2021, 3, 30–52. DOI: 10.1021/acsaelm.0c00484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.