91
Views
1
CrossRef citations to date
0
Altmetric
Articles

Hydrogenation of [Li@C60]PF6: A comparison with fulleranes derived from C60

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1245-1251 | Received 27 May 2022, Accepted 30 May 2022, Published online: 08 Jun 2022

References

  • Cataldo, F., Iglesias-Groth, S., Eds. 2010. Fulleranes: The Hydrogenated Fullerenes. Springer Science & Business Media: Dordrecht.
  • Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S. E. Detection of C60 and C70 in a Young Planetary Nebula. Science. 2010, 329, 1180–1182. DOI: 10.1126/science.1192035.
  • García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V. Formation of Fullerenes in H-Containing Planetary Nebulae. ApJ. 2010, 724, L39–L43. DOI: 10.1088/2041-8205/724/1/L39.
  • García-Hernández, D. A.; Villaver, E.; García-Lario, P.; Acosta-Pulido, J. A.; Manchado, A.; Stanghellini, L.; Shaw, R. A.; Cataldo, F. Infrared Study of Fullerene Planetary Nebulae. ApJ. 2012, 760, 107. DOI: 10.1088/0004-637X/760/2/107.
  • Maier, J. P.; Campbell, E. K. Fullerenes in Space. Angew. Chem. Int. Ed. Engl. 2017, 56, 4920–4929.
  • Webster, A. S. Fulleranes, Fullerenes and the Interstellar Extinction. A & A. 1992, 257, 750–756.
  • Webster, A. Unsaturated Fulleranes and the Minor Features of the Unidentified Infrared Emission near 3 µ m. MNRAS. 1992, 257, 463–470. DOI: 10.1093/mnras/257.3.463.
  • Webster, A. The Interstellar Extinction Curve and the Absorption Spectra of Two Fulleranes. MNRAS. 1997, 288, 221–224. DOI: 10.1093/mnras/288.1.221.
  • Cataldo, F. Fullerane, the Hydrogenated C60 Fullerene: Properties and Astrochemical Considerations. Fuller. Nanotub. Carbon Nanostructures. 2003, 11, 295–316. DOI: 10.1081/FST-120025852.
  • Iglesias-Groth, S. Electric Dipole Emission by Fulleranes and Galactic Anomalous Microwave Emission. ApJ. 2005, 632, L25–L28. DOI: 10.1086/497589.
  • Cataldo, F.; Iglesias-Groth, S. On the Action of UV Photons on Hydrogenated Fulleranes C60H36 and C60D36. MNRAS. 2009, 400, 291–298. DOI: 10.1111/j.1365-2966.2009.15457.x.
  • Cataldo, F.; Iglesias‐Groth, S.; Manchado, A. Synthesis and FT‐IR Spectroscopy of Perdeuterofullerane: C60D36 Evidences of Isotope Effect in the Stability of C60D36. Fuller. Nanotub. Carbon Nanostructures. 2009, 17, 378–389. DOI: 10.1080/15363830903008182.
  • Cataldo, F.; Iglesias‐Groth, S.; Manchado, A. Perdeuterofulleranes: Synthesis and Properties of C70D38 and C70H38. Fuller. Nanotub. Carbon Nanostructures. 2009, 17, 401–413. DOI: 10.1080/15363830903008364.
  • Luzan, S. M.; Cataldo, F.; Tsybin, Y. O.; Talyzin, A. V. Thermal Decomposition of C60H18. J. Phys. Chem. C 2009, 113, 13133–13138. DOI: 10.1021/jp9024377.
  • Cataldo, F.; Iglesias‐Groth, S.; Manchado, A. Kinetic Isotope Effects on the Photolysis of C60H18 and C60D18. Fuller. Nanotub. Carbon Nanostructures. 2009, 17, 414–427. DOI: 10.1080/15363830903008372.
  • Cataldo, F.; Iglesias‐Groth, S.; Manchado, A. Photolytic Decomposition of Hydrogenated C70: C70H38 and C70D38. Fuller. Nanotub. Carbon Nanostructures. 2009, 17, 428–439. DOI: 10.1080/15363830903008422.
  • Cataldo, F.; Iglesias-Groth, S. Characterization of Hydrogenated Fullerene Mixture of C60Hx and C70Hx. Fuller. Nanotub. Carbon Nanostructures. 2010, 18, 97–106. DOI: 10.1080/15363830903291598.
  • Cataldo, F.; Iglesias-Groth, S. A Simple Synthesis of C60H18 from C60 Fullerene and Hydrogen Iodide. Fuller. Nanotub. Carbon Nanostructures. 2010, 18, 117–125. DOI: 10.1080/15363830903291622.
  • Iglesias-Groth, S.; García-Hernández, D. A.; Cataldo, F.; Manchado, A. Infrared Spectroscopy of Hydrogenated Fullerenes (Fulleranes) at Extreme Temperatures. MNRAS. 2012, 423, 2868–2878. DOI: 10.1111/j.1365-2966.2012.21097.x.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A.; Iglesias-Groth, S. 2013. Spectroscopy of Fullerenes, Fulleranes and PAHs in the UV, Visible and near Infrared Spectral Range. Proceedings of the International Astronomical Union, Symposium 297, 9: 294–296.
  • Talyzin, A. V.; Luzan, S.; Anoshkin, I. V.; Nasibulin, A. G.; Kauppinnen, E. I.; Dzwilewski, A.; Kreta, A.; Jamnik, J.; Hassanien, A.; Lundstedt, A.; Grennberg, H. Hydrogen-Driven Cage Unzipping of C60 into Nano-Graphenes. J. Phys. Chem. C. 2014, 118, 6504–6513. DOI: 10.1021/jp500377s.
  • Taylor, R. 1999. Lecture Notes on Fullerene Chemistry: A Handbook for Chemists. Imperial College Press/World Scientific: Singapore.
  • Hirsch, A.; Brettreich, M. 2006. Fullerenes: Chemistry and Reactions. John Wiley & Sons: New York.
  • Zhang, Y.; Kwok, S.; Sadjadi, S. Fullerenes and Fulleranes in Circumstellar Envelopes. J. Phys. Conf. Ser. 2016, 728, 52004.
  • Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; Cataldo, F. A Search for Hydrogenated Fullerenes in Fullerene-Containing Planetary Nebulae. A&A. 2016, 589, A5. DOI: 10.1051/0004-6361/201527727.
  • Zhang, Y.; Sadjadi, S.; Hsia, C. H.; Kwok, S. Search for Hydrogenated C60 (Fulleranes) in Circumstellar Envelopes. ApJ. 2017, 845, 76. DOI: 10.3847/1538-4357/aa71ac.
  • Zhang, Y.; Sadjadi, S.; Hsia, C. H. Hydrogenated Fullerenes (Fulleranes) in Space. Astrophys. Space Sci. 2020, 365, 67. DOI: 10.1007/s10509-020-03779-5.
  • Tanuma, Y.; Maekawa, T.; Ewels, C. Methodological Investigation for Hydrogen Addition to Small Cage Carbon Fullerenes. Crystals. 2021, 11, 1334. DOI: 10.3390/cryst11111334.
  • Cong, H.; Yu, B.; Akasaka, T.; Lu, X. Endohedral Metallofullerenes: An Unconventional Core–Shell Coordination Union. Coord. Chem. Rev. 2013, 257, 2880–2898. DOI: 10.1016/j.ccr.2013.05.020.
  • Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. DOI: 10.1021/cr300297r.
  • Yang, S. Endohedral Fullerenes: From Fundamentals to Applications. World Scientific: Singapore. 2014.
  • Lu, X.; Echegoyen, L.; Balch, A. L.; Nagase, S.; Akasaka, T. Endohedral Metallofullerenes: Basics and Applications. CRC Press: Boca Raton, USA. 2014.
  • Shinohara, H.; Tagmatarchis, N. 2015. Endohedral Metallofullerenes: Fullerenes with Metal Inside. John Wiley & Sons: New York.
  • Popov, A. A., Ed. Endohedral Fullerenes: Electron Transfer and Spin. Springer International Publishing: Cham, Switzerland. 2017.
  • Campbell, E. E. B. Collisonal Production and Characterization of Alkali Endohedral Fullerenes. In “Endofullerenes. A New Class of Carbon Clusters, Akasaka, T. and Nagase, S., Eds.. Kluwer Academic Publishers: Dordrecht. 2002.
  • Matsuo, Y., Okada, H., Ueno, H., Eds. Endohedral Lithium-Containing Fullerenes: Preparation, Derivatization, and Application. Springer Nature, Singapore. 2018.
  • Okada, H.; Komuro, T.; Sakai, T.; Matsuo, Y.; Ono, Y.; Omote, K.; Yokoo, K.; Kawachi, K.; Kasama, Y.; Ono, S.; et al. Preparation of Endohedral Fullerene Containing Lithium (Li@C60) and Isolation as Pure Hexafluorophosphate Salt ([Li+@C 60][PF6−]). RSC Adv. 2012, 2, 10624–10631. DOI: 10.1039/c2ra21244g.
  • Cataldo, F.; García-Hernández, D. A.; Manchado, A. Far Infrared Spectroscopy and Other Spectral and Thermal Properties of [Li@C60]PF6. Fuller. Nanotub. Carbon Nanostructures. 2019, 27, 695–701. DOI: 10.1080/1536383X.2019.1633521.
  • García-Hernández, D. A.; Manchado, A.; Cataldo, F. [Li@C60] PF6: Infrared Spectra from 90K to 523K; Determination of the Molar Extinction Coefficients and Integrated Molar Absorptivity. Fuller. Nanotub. Carbon Nanostructures. 2020, 28, 474–479. DOI: 10.1080/1536383X.2019.1703696.
  • Darwish, A. D.; Abdul-Sada, A. K.; Langley, G. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Polyhydrogenation of [60]-and [70] Fullerenes. J. Chem. Soc, Perkin Trans. 2. 1995, 2, 2359–2365. DOI: 10.1039/p29950002359.
  • Darwish, A. D.; Abdul-Sada, A. K.; Langley, G. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Polyhydrogenation of [60]-and [70] Fullerenes with Zn/HCl and Zn/DCl. Synth. Met. 1996, 77, 303–307. DOI: 10.1016/0379-6779(96)80107-X.
  • ] Bergosh, R. G.; Meier, M. S.; Laske Cooke, J. A.; Spielmann, H. P.; Weedon, B. R. Dissolving Metal Reductions of Fullerenes. J. Org. Chem. 1997, 62, 7667–7672. DOI: 10.1021/jo970878h.
  • Spielmann, H. P.; Wang, G. W.; Meier, M. S.; Weedon, B. R. Preparation of C70H2, C70H4, and C70H8: Three Independent Reduction Manifolds in the Zn (Cu) Reduction of C70. J. Org. Chem. 1998, 63, 9865–9871. DOI: 10.1021/jo981627r.
  • Meier, M. S.; Weedon, B. R.; Spielmann, H. P. Synthesis and Isolation of One Isomer of C60H6. J. Am. Chem. Soc. 1996, 118, 11682–11683. DOI: 10.1021/ja961012g.
  • Sabirov, D. S.; Garipova, R. R.; Cataldo, F. Polarizability of Isomeric and Related Interstellar Compounds in the Aspect of Their Abundance. Mol. Astrophys. 2018, 12, 10–−19. DOI: 10.1016/j.molap.2018.05.001.
  • March, J. 1985. Advanced Organic Chemistry, 3rd Ed.; J. Wiley & Sons: New York.
  • Denis, P. A. Chemical Reactivity of Lithium‐Doped Fullerenes. J. Phys. Org. Chem. 2012, 25, 322–326. DOI: 10.1002/poc.1918.
  • Iglesias-Groth, S.; Cataldo, F. 2010. Fulleranes and Carbon Nanostructures in the Interstellar Medium. Chapter 1 in Fulleranes, Cataldo F. and Iglesias-Groth S., Eds. Springer: Dordrecht; pp.1–25
  • Taylor, R. Aromatic Fullerene Derivatives. PCCP. 2004, 6, 328–331. DOI: 10.1039/B312502P.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.