102
Views
2
CrossRef citations to date
0
Altmetric
Review

Graphenic nanospace: Bondonic entanglement perspectives

ORCID Icon
Pages 91-108 | Received 23 Jun 2022, Accepted 31 Jul 2022, Published online: 29 Aug 2022

References

  • Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. DOI: 10.1103/PhysRev.47.777.
  • Everett, H. [The] ‘Relative State’ Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454–462. DOI: 10.1103/RevModPhys.29.454.
  • Goldstein, S.; Allori, V.; Tumulka, R.; Zanghi, N. Many-Worlds and Schrödinger’s First Quantum Theory. Br. J. Philos. Sci. 2011, 62, 1–27. DOI: 10.1093/bjps/axp053.
  • Norsen, T. Foundations of Quantum Mechanics. An Exploration of the Physical Meaning of Quantum Theory. Springer International Publishing AG: Cham, Switzerland, 2017. DOI: 10.1007/978-3-319-65867-4.
  • Frenking, G.; Shaik, S. The Chemical Bond. Fundamental Aspects of Chemical Bonding. Wiley: New York, 2014. DOI: 10.1002/9783527664696.
  • Putz, M. V. Density Functional Theory of Bose-Einstein Condensation: Road to Chemical Bonding Quantum Condensate. Struct. Bond. 2012, 149, 1–50.
  • Putz, M. V. The Bondons: The Quantum Particles of the Chemical Bond. Int. J. Mol. Sci. 2010, 11, 4227–4256.
  • Putz, M. V.; Ori, O. Bondonic Effects in Group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects. Molecules. 2014, 19, 4157–4188. DOI: 10.3390/molecules19044157.
  • Putz, M. V.; Ori, O.; Diudea, M. V. Bondonic Electronic Properties of 2D Graphenic Lattices with Structural Defects. In Graphene Science Handbook, Electrical and Optical Properties; Aliofkhazraei, M., Ali, N., Milne, W. I., Ozkan, C. S., Mitura, S., Gervasoni, J. L., Eds.; CRC Press: Boca Raton, USA, 2016, 3, pp 55–80.
  • Witsch, K. Dieses unscheinbare Gitter könnte den Batteriemarkt revolutionieren. Handelsblatt. 2018, 20. https://www.handelsblatt.com/unternehmen/industrie/graphen-dieses-unscheinbare-gitter-koennte-den-batteriemarkt-revolutionieren/22712732.html (accessed May 2021).
  • Bloch, I. Quantum Coherence and Entanglement with Ultracold Atoms in Optical Lattices. Nature. 2008, 453, 1016–1022. DOI: 10.1038/nature07126.
  • Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature. 1985, 318, 162–163. 10.1038/318162a0
  • Ori, O.; D'Mello, M. A Topological Study of the Structure of the C76 Fullerene. Chem. Phys. Lett. 1992, 197, 49–54. DOI: 10.1016/0009-2614(92)86020-I.
  • Ori, O.; D'Mello, M. Analysis of the Structure of the C78 Fullerene: A Topological Approach. Appl. Phys. A. 1993, 56, 35–39. DOI: 10.1007/BF00351900.
  • Schwerdtfeger, P.; Wirz, L. N.; Avery, J. The Topology of Fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 96–145.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Reiss, T.; Hjelt, K.; Ferrari, A. C. Graphene is on Track to Deliver on Its Promises. Nat. Nanotechnol. 2019, 14, 907–910. DOI: 10.1038/s41565-019-0557-0.
  • Kirby, E. C.; Mallion, R. B.; Pollak, P. Toroidalpolyhexes. Faraday Trans. 1993, 89, 1945–1953. DOI: 10.1039/ft9938901945.
  • Klein, D. J. Elemental Benzenoids. J. Chem. Inf. Comput. Sci. 1994, 34, 453–459. DOI: 10.1021/ci00018a037.
  • Ceulemans, A.; Chibotaru, L. F.; Bovin, S. A.; Fowler, P. W. The Electronic Structure of Polyhex Carbon Tori. J. Chem. Phys. 2000, 112, 4271–4278. DOI: 10.1063/1.480972.
  • Reiter, K.; Weigend, F.; Wirz, L. N.; Dimitrova, M.; Sundholm, D. Magnetically Induced Current Densities in Toroidal Carbon Nanotubes. J. Phys. Chem. C. 2019, 123, 15354–15365. DOI: 10.1021/acs.jpcc.9b03769.
  • Banhart, F. The Formation of a Connection between Carbon Nanotubes in an Electron Beam. Nano Lett. 2001, 1, 329–332. DOI: 10.1021/nl015541g.
  • Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science. 2001, 292, 706–709. DOI: 10.1126/science.1058782.
  • Medeiros, P. V.; Marks, S.; Wynn, J. M.; Vasylenko, A.; Ramasse, Q. M.; Quigley, D.; Sloan, J.; Morris, A. J. Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated inside Ultranarrow, Single-Walled Carbon Nanotubes. ACS Nano. 2017, 11, 6178–6185.
  • Ori, O.; Cataldo, F.; Putz, M. V. Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments. Int. J. Mol. Sci. 2011, 12, 7934–7949.
  • Ori, O.; Putz, M. V.; Gutman, I.; Schwerdtfeger, P. Generalized Stone-Wales Transformations for Fullerene Graphs Derived from Berge’s Switching Theorem. In Ante Graovac—Life and Works; Gutman, I., Pokric, B., Vukicevic, D., Eds.; University of Kragujevac and Faculty of Science: Kragujevac, Serbia, 2014; Mathematical Chemistry Monographs, Vol. 16, pp 259–272.
  • Ori, O.; Putz, M. V. Topological Evolution of the 5|8|5 Defect in Graphene. New Front. Chem. 2018, 27, 105–113.
  • King, R. B. Chemical Applications of Topology and Group Theory. 29. Low Density Polymeric Carbon Allotropes Based on Negative Curvature Structures. J. Phys. Chem. 1996, 100, 15096–15104. DOI: 10.1021/jp9613201.
  • King, R. B. Novel Highly Symmetrical Trivalent Graphs Which Lead to Negative Curvature Carbon and Boron Nitride Chemical Structures. Disc. Math. 2002, 244, 203–210. DOI: 10.1016/S0012-365X(01)00067-X.
  • Kirby, E. C. Remarks upon Recognising Genus and Possible Shapes of Chemical Cages in the Form of Polyhedra, Tori and Klein Bottles. Croat. Chem. Acta. 1995, 68, 269–282.
  • Deza, M.; Fowler, P. W.; Rassat, A.; Rogers, K. M. Fullerenes as Tilings of Surfaces. J. Chem. Inf. Comput. Sci. 2000, 40, 550–558. DOI: 10.1021/ci990066h.
  • Sabirov, D. S.; Ori, O. Skeletal Rearrangements of the C240 Fullerene: Efficient Topological Descriptors for Monitoring Stone–Wales Transformations. Mathematics. 2020, 8, 968. DOI: 10.3390/math8060968.
  • CDC. 2020 Centers for Disease Control and Prevention (CDC), in Public Domain. https://phil.cdc.gov/default.aspx (accessed May 2020; retrieved: May 2021).
  • Gordon, D. E.; Jang, G. M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K. M.; O'Meara, M. J.; Rezelj, V. V.; Guo, J. Z.; Swaney, D. L.; et al. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature. 2020, 583, 459–468.
  • Buzatu, D. L.; Ianăși, P.; Putz, M. V. Quantum Metrological Matrices for Sustainable Graphentronics. In Solar Energy Conversion in Communities; Visa, I., Duta, A, Eds.; Springer International Publishing AG: Cham, Switzerland, 2020; pp 315–326. DOI: 10.1007/978-3-030-55757-7_22.
  • Putz, A. M.; Putz, M. V. Spectral Inverse Quantum (Spectral-IQ) Method for Modeling Mesoporous Systems. Application on Silica Films by FTIR. Int. J. Mol. Sci. 2012, 13, 15925–15941. DOI: 10.3390/ijms131215925.
  • Band, Y. E.; Avishai, Y. Quantum Mechanics with Applications to Nanotechnology and Information Science. Elsevier & Academic Press: Amsterdam-New York, 2013.
  • Putz, M. V.; Ori, O. Topological Symmetry Transition between Toroidal and Klein Bottle Graphenic Systems. Symmetry. 2020, 12, 1233. DOI: 10.3390/sym12081233.
  • Bennett, C.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 1993, 70, 1895–1899.
  • Putz, M. V. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems. Int. J. Mol. Sci. 2009, 10, 4816–4940. DOI: 10.3390/ijms10114816.
  • Shi, J.; Lee, W.; Liu, Y.; Yang, Y.; Wang, P. Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines. IEEE Trans. Ind. Appl. 2012, 48, 1064–1069. DOI: 10.1109/TIA.2012.2190816.
  • Mayorov, A. S.; Elias, D. C.; Mucha-Kruczynski, M.; Gorbachev, R. V.; Tudorovskiy, T.; Zhukov, A.; Morozov, S. V.; Katsnelson, M. I.; Fal'ko, V. I.; Geim, A. K.; Novoselov, K. S. Interaction-Driven Spectrum Reconstruction in Bilayer Graphene. Science. 2011, 333, 860–864. DOI: 10.1126/science.1208683.
  • Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; et al. Field-Effect Tunneling Transistor based on Vertical Graphene Heterostructures. Science. 2012, 335, 947–950. DOI: 10.1126/science.1218461.
  • Putz, M. V.; Ori, O. Predicting Bondons by Goldstone Mechanism with Chemical Topological Indices. Int. J. Quantum Chem. 2015, 115, 137–143. DOI: 10.1002/qua.24794.
  • Putz, M. V.; Ori, O. Exotic Properties of Carbon Nanomatter. Springer Netherlands: Dordrecht, 2015.
  • Putz, M. V.; Tudoran, M. A.; Mirica, M. C. Quantum Dots Searching for Bondots: Towards Sustainable Sensitized Solar Cells. In Sustainable Nanosystems Development, Properties, and Applications; Putz, M. V., Mirica, M. C., Eds.; IGI Global: Hershey, PA, 2016; Chap. 9.
  • Putz, M. V.; Ori, O.; Diudea, M. V.; Szefler, B.; Pop, R. Bondonic Chemistry: Spontaneous Symmetry Breaking of the Topo-Reactivity on Graphene. In Distances, Symmetry and Topology in Carbon Nanomaterials; Ashrafi, A. R., Diudea, M. V., Eds.; Springer Verlag: Dorderecht, 2016, Chap. 20; pp 345–389.
  • Putz, M. V.; Tudoran, M. A.; Mirica, M. C.; Iorga, M. I.; Bănică, R.; Novaconi, ȘD.; Balcu, I.; Rus, ȘF.; Putz, A. M. Sustainable Design of Photovoltaics: Devices and Quantum Information. In Putz, M. V., Mirica, M. C., Eds.; Sustainable Nanosystems Development, Properties, and Applications; IGI Global: Hershey, PA, 2016; Chap. 11.
  • Sarovar, M.; Young, K. C.; Schenkel, T.; Whaley, K. B. Quantum Nondemolition Measurements of Single Donor Spins in Semiconductors. Phys. Rev. B. 2008, 78, 245302. DOI: 10.1103/PhysRevB.78.245302.
  • Morton, J. J. L.; Tyryshkin, A. M.; Brown, R. M.; Shankar, S.; Lovett, B. W.; Ardavan, A.; Schenkel, T.; Haller, E. E.; Ager, J. W.; Lyon, S. A. Solid-State Quantum Memory Using the 31P Nuclear Spin. Nature. 2008, 455, 1085–1088. DOI: 10.1038/nature07295.
  • Leggett, A. J.; Garg, A. Quantum Mechanics versus Macroscopic Realism: Is the Flux There When Nobody Looks? Phys. Rev. Lett. 1985, 54, 857–860. DOI: 10.1103/PhysRevLett.54.857.
  • Morello, A.; Pla, J. J.; Zwanenburg, F. A.; Chan, K. W.; Tan, K. Y.; Huebl, H.; Möttönen, M.; Nugroho, C. D.; Yang, C.; van Donkelaar, J. A.; et al. Single-Shot Readout of an Electron Spin in Silicon. Nature. 2010, 467, 687–691. DOI: 10.1038/nature09392.
  • Xiao, M.; House, M. G.; Jiang, H. W. Measurement of the Spin Relaxation Time of Single Electrons in a Silicon Metal-Oxide-Semiconductor-Based Quantum Dot. Phys. Rev. Lett. 2010, 104, 096801. DOI: 10.1103/PhysRevLett.104.096801.
  • Hollenberg, L. C. L.; Greentree, A. D.; Fowler, A. G.; Wellard, C. J. Two-Dimensional Architectures for Donor-Based Quantum Computing. Phys. Rev. B. 2006, 74, 045311. DOI: 10.1103/PhysRevB.74.045311.
  • Mahapatra, S.; Büch, H.; Simmons, M. Y. Charge Sensing of Precisely Positioned P Donors in Si. Nano Lett. 2011, 11, 4376–4381. DOI: 10.1021/nl2025079.
  • Danilyuk, A. L.; Trafimenko, A. G.; Fedotov, A. K.; Svito, I. A.; Prischepa, S. L. Negative Differential Resistance in n-Type Noncompensated Silicon at Low Temperature. Appl. Phys. Lett. 2016, 109, 222104. DOI: 10.1063/1.4968825.
  • Kane, B. E. A Silicon-Based Nuclear Spin Quantum Computer. Nature. 1998, 393, 133–137. DOI: 10.1038/30156.
  • Rahman, R.; Park, S. H.; Cole, J. H.; Greentree, A. D.; Muller, R. P.; Klimeck, G.; Hollenberg, L. C. L. Atomistic Simulations of Adiabatic Coherent Electron Transport in Triple Donor Systems. Phys. Rev. B. 2009, 80, 035302. DOI: 10.1103/PhysRevB.80.035302.
  • Rahman, R.; Verduijn, J.; Kharche, N.; Lansbergen, G. P.; Klimeck, G.; Hollenberg, L. C. L.; Rogge, S. Engineered Valley-Orbit Splittings in Quantum-Confined Nanostructures in Silicon. Phys. Rev. B. 2011, 83, 195323. DOI: 10.1103/PhysRevB.83.195323.
  • Hu, X.; Koiller, B.; Das Sarma, S. Charge Qubits in Semiconductor Quantum Computer Architecture: Tunnel Coupling and Decoherence. Phys. Rev. B. 2005, 71, 235332. DOI: 10.1103/PhysRevB.71.235332.
  • Ori, O.; Putz, M. V. Isomeric Formation of 5|8|5 Defects in Graphenic Systems. Fuller. Nanotub. Car. N. 2014, 22, 887–900. DOI: 10.1080/1536383X.2012.749454.
  • Putz, M. V. (project leader) Fullerene Based Double-Graphene Photovoltaics 2017-2018, PED 123/2017, UEFISCDI, Romania.
  • Cataldo, F.; Putz, M. V.; Ursini, O.; Angelini, G.; Garcia-Hernandez, A.; Manchado, A. A New Route to Graphene Starting from Heavily Ozonized Fullerenes: Part 1 – Thermal Reduction under Inert Atmosphere. Fuller. Nanotub. Carbon Nanostructures. 2016, 24, 52–61. DOI: 10.1080/1536383X.2015.1101535.
  • Putz, M. V.; Svera, P.; Putz, A. M.; Cataldo, F. Quantum Particles on Graphenic Systems. Part 2. Bondons by Absorption Raman Spectra. Fuller. Nanotub. Carbon Nanostructures. 2018, 26:6, 330–341.
  • Veendrick, H. J. M. Nanometer CMOS ICs. From Basics to ASICs, 2nd ed.; Springer International Publishing AG: Cham: Switzerland, 2017.
  • ITRS (International Technology Roadmap for Semiconductors) 2.0 More Moore. http://www.itrs2.net/ (accessed May 2021).
  • Prati, E.; Morello, A. Quantum Information in Silicon Devices Based on Individual Dopants. In Single-Atom Nanoelectronics; Prati, E., Shinada, T., Eds.; Pan Standford Publishing: Singapore, 2013; Chap. 2, pp 5–39.
  • Prati, E.; Shinada, T. Single-Atom Nanoelectronics; Pan Standford Publishing: Singapore, 2013.
  • Ashoori, R. C. Electrons in Artificial Atoms. Nature. 1996, 379, 413–419. DOI: 10.1038/379413a0.
  • Prati, E. Valley Blockade Quantum Switching in Silicon Nanostructures. J. Nanosci. Nanotechnol. 2011, 11, 8522–8526. DOI: 10.1166/jnn.2011.4957.
  • Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; et al. Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems. Nanoscale. 2015, 7, 4598–4810.
  • Buzatu, D. L.; Mirica, M. C.; Putz, M. V. Semiconductor Graphenes for Photovoltaics. In Nearly Zero Energy Communities: Proceedings of the Conference for Sustainable Energy (CSE) 2017; Springer Proceedings in Energy; Visa, I., Duta, A., Eds.; Springer: Cham, Switzerland, 2018; pp 348–363.
  • Wang, D. S.; Fowler, A. G.; Hollenberg, L. C. L. Surface Code Quantum Computing with Error Rates over 1%. Phys. Rev. A. 2011, 83, 020302(R). DOI: 10.1103/PhysRevA.83.020302.
  • Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S. Quantum Nondemolition Measurements. Science. 1980, 209, 547–557. DOI: 10.1126/science.209.4456.547.
  • van Houten, H.; Beenakker, C. W. J. Quantum Point Contacts. Phys. Today. 1996, 49, 22–27. DOI: 10.1063/1.881503.
  • Jong, L. M.; Greentree, A. D.; Conrad, V. I.; Hollenberg, L. C. L.; Jamieson, D. N. Coherent Tunneling Adiabatic Passage with the Alternating Coupling Scheme. Nanotechnology. 2009, 20, 405402. DOI: 10.1088/0957-4484/20/40/405402.
  • Dirac, P. A. M. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. London. Ser. A. 1929, 123, 714–733. DOI: 10.1098/rspa.1929.0094.
  • Scerri, E. The Periodic Table: Its Story and Its Significance; Oxford University Press: New York, 2007.
  • Putz, M. V. Quantum Nanochemistry, Volume Three. Quantum Molecules and Reactivity; Apple Academic Press: Palm Bay, FL & Burlington, ON, 2016.
  • Putz, M. V. Quantum Nanochemistry, Volume Five. Quantum Structure-Activity Relationships (Qu-SAR); Apple Academic Press: Palm Bay, FL & Burlington, ON, 2016.
  • Putz, M. V. Chemical Bonding by the Chemical Orthogonal Space of Reactivity. Int. J. Mol. Sci. 2021, 22, 223. DOI: 10.3390/ijms22010223.
  • Frenking, G.; Shaik, S. Eds. The Chemical Bond: Fundamental Aspects of Chemical Bonding; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2014; Preface, pp XIII–XXXI.
  • Shaik, S. Bonds and Intermolecular Interactions–the Return of Cohesion to Chemistry. In Intermolecular Interactions in Crystals: Fundamentals of Crystal Engineering; Novoa, J., Ed.; Royal Society of Chemistry: Croydon, UK, 2017; pp 3–68. https://pubs.rsc.org/en/content/ebook/978-1-78262-173-7.
  • Filatov, S.; Auzinsh, M. On Interchangeability of Probe–Object Roles in Quantum–Quantum Interaction-Free Measurement. Found. Phys. 2019, 49, 283–297. DOI: 10.1007/s10701-019-00244-4.
  • Putz, M. V. Quantum Nanochemistry, Volume Four. Quantum Solids and Orderability; Apple Academic Press: Palm Bay, FL & Burlington, ON, 2016.
  • Putz, M. V.; Mirica, M. C. Sustainable Nanosystems Development, Properties, and Applications; IGI Global; Hershey: Pasadena, CA, 2016.
  • Buzatu, D. L.; Ianasi, P.; Putz, M. V. Quantum Metrological Matrices for Sustainable Graphentronics. In Solar Energy Conversion in Communities: Proceedings of the Conference for Sustainable Energy (CSE) 2020; Springer Proceedings in Energy; Visa, I., Duta, A., Eds.; Springer International Publishing AG: Cham, Switzerland, 2020; Chap. 22; pp 315–326. DOI: 10.1007/978-3-030-55757-7.
  • Kaye, P.; Laflamme, R.; Mosca, M. An Introduction to Quantum Computing; Oxford University Press: New York, 2007.
  • Sych, D.; Leuchs, G. A Complete Basis of Generalized Bell States. New J. Phys. 2009, 11, 013006. DOI: 10.1088/1367-2630/11/1/013006.
  • Huo, M.; Qin, J.; Cheng, J.; Yan, Z.; Qin, Z.; Su, X.; Jia, X.; Xie, C.; Peng, K. Deterministic Quantum Teleportation through Fiber Channels. Sci. Adv. 2018, 4, eaas9401. DOI: 10.1126/sciadv.aas9401.
  • Zaman, F.; Jeong, Y.; Shin, H. Counterfactual Bell-State Analysis. Sci. Rep. 2018, 8, 14641. DOI: 10.1038/s41598-018-32928-8.
  • Adler, S. L. Quaternionic Quantum Mechanics and Quantum Fields; Oxford University Press: New York, NY, 1995.
  • Baez, J. C. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, by John H. Conway and Derek A. Smith. Bull. Amer. Math. Soc. 2005, 42, 229–243.
  • Stewart, I. Why Beauty is Truth. A History of Symmetry; Basic Books: New York, 2007.
  • Wick, G. C. The Evaluation of the Collision Matrix. Phys. Rev. 1950, 80, 268–272. DOI: 10.1103/PhysRev.80.268.
  • Vakhania, N. N. Random Vectors with Values in Quaternion Hilbert Space. Theory Probab. Appl. 1999, 43, 99–115. DOI: 10.1137/S0040585X97976696.
  • Bryc, W.; Pierce, V. U. 2008. Seminar Talk: Wick formula for quaternion normal laws; The Allen Institute for Artificial Intelligence, Semantic Scholar Project. https://www.semanticscholar.org/.
  • Gnutzmann, S.; Smilansky, U. Quantum Graphs: Applications to Quantum Chaos and Universal Spectral Statistics. Adv. Phys. 2006, 55, 527–625. https://arxiv.org/abs/nlin/0605028v2. DOI: 10.1080/00018730600908042.
  • Rapoport, D. L. Self-Reference, the Möbius and Klein Bottle Surfaces, Multivalued Logic and Cognition. Int. J. Comput. Anticipatory Syst. 2011, 23, 103–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.