85
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pyrolysis mass-spectrometry study of detonation nanodiamonds surface chemistry

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 68-74 | Received 28 Jun 2022, Accepted 29 Aug 2022, Published online: 10 Sep 2022

References

  • Farias, B. V.; Brown, D.; Hearn, A.; Nunn, N.; Shenderova, O.; Khan, S. A. Nanodiamond-Stabilized Pickering Emulsions: Microstructure and Rheology. J. Colloid Interface Sci. 2020, 580, 180–191. DOI: 10.1016/j.jcis.2020.07.030.
  • Palamarchuk, K. V.; Borodina, T. N.; Kostenko, A. V.; Chesnokov, Y. M.; Kamyshinsky, R. A.; Palamarchuk, N. P.; Yudina, E. B.; Nikolskaya, E. D.; Yabbarov, N. G.; Mollaeva, M. R.; et al. Development of Submicrocapsules Based on Co-Assembled Like-Charged Silica Nanoparticles and Detonation Nanodiamonds and Polyelectrolyte Layers. Pharmaceutics 2022, 14, 575–590. DOI: 10.3390/pharmaceutics14030575.
  • Tang, G. F.; Zhang, M. R.; Liu, Q. Q.; Tian, X. M.; Mai, R. R. Applications of Nanodiamonds in the Diagnosis and Treatment of Neurological Diseases. J. Nanoparticle Res. 2022, 24, 55. DOI: 10.1007/s11051-022-05434-2.
  • Kaluç, N.; Thomas, P. B. A Carboxylated Nanodiamond Reduces Oxidative Stress and Shows No Sign of Toxicity in Yeast. Fullerenes Nanotub. Carbon Nanostructures 2022, 30, 487–494. DOI: 10.1080/1536383X.2021.1960509.
  • Arnault, J. C. Nanodiamonds Advanced Material Analysis, Properties and Applications; Elsevier: Amsterdam, 2017.
  • Boudou, J. P.; Curmi, P. A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High Yield Fabrication of Fluorescent Nanodiamonds. Nanotechnology 2009, 20, 235602. DOI: 10.1088/0957-4484/20/23/235602.
  • Shang, S. Y.; Tong, Y.; Zhang, S. X.; Huang, F. L. Study on Phase Transformation Mechanism of Various Carbon Sources in Detonation Synthesis of Diamond. Fullerenes Nanotub. Carbon Nanostructures 2020, 28, 877–885. DOI: 10.1080/1536383X.2020.1777109.
  • Morita, Y.; Takimoto, T.; Yamanaka, H.; Kumekawa, K.; Morino, S.; Aonuma, S.; Kimura, T.; Komatsu, N. A Facile and Scalable Process for Size-Controllable Separation of Nanodiamond Particles as Small as 4 Nm. Small 2008, 4, 2154–2157. DOI: 10.1002/smll.200800944.
  • Boudou, J. P.; David, M. O.; Joshi, V.; Eidi, H.; Curmi, P. A. Hyperbranched Polyglycerol Modified Fluorescent Nanodiamond for Biomedical Research. Diam. Relat. Mater. 2013, 38, 131–138. DOI: 10.1016/j.diamond.2013.06.019.
  • Barzegar Amiri Olia, M.; Donnelly, P. S.; Hollenberg, L. C. L.; Mulvaney, P.; Simpson, D. A. Advances in the Surface Functionalization of Nanodiamonds for Biological Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 9985–10005. DOI: 10.1021/acsanm.1c02698.
  • Panich, A. M.; Salti, M.; Prager, O.; Swissa, E.; Kulvelis, Y. V.; Yudina, E. B.; Aleksenskii, A. E.; Goren, S. D.; Vul’, A. Y.; Shames, A. I. PVP-Coated Gd-Grafted Nanodiamonds as a Novel and Potentially Safer Contrast Agent for in Vivo MRI. Magn. Reson. Med. 2021, 86, 935–942. DOI: 10.1002/mrm.28762.
  • Krüger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.; Aleksenskii, A. E.; Vul’, A. Y.; Ōsawa, E. Unusually Tight Aggregation in Detonation Nanodiamond: Identification and Disintegration. Carbon 2005, 43, 1722–1730. DOI: 10.1016/j.carbon.2005.02.020.
  • Aleksenskiy, A. E.; Eydelman, E. D.; Vul, A. Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 2011, 3, 68–74. DOI: 10.1166/nnl.2011.1122.
  • Williams, O. A.; Hees, J.; Dieker, C.; Jäger, W.; Kirste, L.; Nebel, C. E. Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano 2010, 4, 4824–4830. DOI: 10.1021/nn100748k.
  • Turcheniuk, K.; Trecazzi, C.; Deeleepojananan, C.; Mochalin, V. N. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Appl. Mater. Interfaces 2016, 8, 25461–25468. DOI: 10.1021/acsami.6b08311.
  • Shestakov, M. S.; Shvidchenko, A. V.; Yudina, E. B.; Besedina, N. A.; Koniakhin, S. V.; Kirilenko, D. A.; Dideikin, A. T. Sonication Assisted Advanced Oxidation Process: Hybrid Method for Deagglomeration of Detonation Nanodiamond Particles. Fullerenes Nanotub. Carbon Nanostructures 2022, 30, 283–289. DOI: 10.1080/1536383X.2021.1935887.
  • Grechikhina, A. M.; Abaturov, M. A.; Alexenko, A. E.; Galushko, T. B.; Melnik, N. N.; Gorbunov, A. M.; Kiselev, M. R.; Polushin, N. I.; Zavaleyev, V. A.; Spitsyn, B. V. Modification and Functional Properties of Detonation Nanodiamond. Fullerenes Nanotub. Carbon Nanostructures 2020, 28, 325–327. DOI: 10.1080/1536383X.2019.1708734.
  • Jiang, T.; Ji, S.; Xu, K. FTIR Studies on the Spectral Changes of the Surface Functional Groups of Ultradispersed Diamond Powder Synthesized by Explosive Detonation after Treatment in Hydrogen, Nitrogen, Methane and Air at Different Temperature. Faraday Trans. 1996, 92, 3401–3406. DOI: 10.1039/ft9969203401.
  • Jiang, T.; Xu, K. FTIR Study of Ultradispersed Diamond Powder Synthesized by Explosive Detonation. Carbon N. Y. 1995, 33, 1663–1671. DOI: 10.1016/0008-6223(95)00115-1.
  • Xu, X.; Yu, Z.; Zhu, Y.; Wang, B. Influence of Surface Modification Adopting Thermal Treatments on Dispersion of Detonation Nanodiamond. J. Solid State Chem. 2005, 178, 688–693. DOI: 10.1016/j.jssc.2004.12.025.
  • Petit, T.; Puskar, L. FTIR Spectroscopy of Nanodiamonds: Methods and Interpretation. Diam. Relat. Mater. 2018, 89, 52–66. DOI: 10.1016/j.diamond.2018.08.005.
  • Ishii, T.; Kyotani, T. Chapter 14 – Temperature Programmed Desorption. In Materials Science and Engineering of Carbon; Inagaki, M., Kang, F., Eds.; Butterworth-Heinemann: Oxford, 2016; pp 287–305. DOI: 10.1016/B978-0-12-805256-3.00014-3.
  • Dworzanski, J. P.; Meuzelaar, H. L. C., Lindon, J. C. B. T.-E.S. Pyrolysis Mass Spectrometry, Methods*, 2nd ed.; Academic Press: Oxford, 1999; pp 2301–2313. DOI: 10.1016/B978-0-12-374413-5.00261-X.
  • Brender, P.; Gadiou, R.; Rietsch, J. C.; Fioux, P.; Dentzer, J.; Ponche, A.; Vix-Guterl, C. Characterization of Carbon Surface Chemistry by Combined Temperature Programmed Desorption with in Situ X-Ray Photoelectron Spectrometry and Temperature Programmed Desorption with Mass Spectrometry Analysis. Anal. Chem. 2012, 84, 2147–2153. DOI: 10.1021/ac102244b.
  • Düngen, P.; Schlögl, R.; Heumann, S. Non-Linear Thermogravimetric Mass Spectrometry of Carbon Materials Providing Direct Speciation Separation of Oxygen Functional Groups. Carbon N. Y. 2018, 130, 614–622. DOI: 10.1016/j.carbon.2018.01.047.
  • Song, J.; Peng, P. Characterisation of Black Carbon Materials by Pyrolysis-Gas Chromatography-Mass Spectrometry. J. Anal. Appl. Pyrol. 2010, 87, 129–137. DOI: 10.1016/j.jaap.2009.11.003.
  • Huss, G. R.; Lewis, R. S. Noble Gases in Presolar Diamonds I: Three Distinct Components and Their Implications for Diamond Origins. Meteoritics 1994, 29, 791–810. DOI: 10.1111/j.1945-5100.1994.tb01094.x.
  • Verchovsky, A. B.; Fisenko, A. V.; Semjonova, L. F.; Wright, I. P.; Lee, M. R.; Pillinger, C. T. C, N, and Noble Gas Isotopes in Grain Size Separates of Presolar Diamonds from Efremovka. Science 1998, 281, 1165–1168. DOI: 10.1126/science.281.5380.1165.
  • Koscheev, A. P.; Gromov, M. D.; Mohapatra, R. K.; Ott, U. History of Trace Gases in Presolar Diamonds Inferred from Ion-Implantation Experiments. Nature 2001, 412, 615–617. DOI: 10.1038/35088009.
  • Fisenko, A. V.; Verchovsky, A. B.; Semjonova, L. F. Kinetics of C, N, and Xe Release during the Quasi-Isothermal Pyrolysis and Subsequent Oxidation of Nanodiamond from the Orgueil CI Meteorite. Geochem. Int. 2013, 51, 1–12. DOI: 10.1134/S0016702913010035.
  • Ando, T.; Yamamoto, K.; Ishii, M.; Kamo, M.; Sato, Y. Vapour-Phase Oxidation of Diamond Surfaces in O2 Studied by Diffuse Reflectance Fourier-Transform Infrared and Temperture-Programmed Desorption Spectroscopy. Faraday Trans. 1993, 89, 3635–3640. DOI: 10.1039/ft9938903635.
  • Petrova, N.; Zhukov, A.; Gareeva, F.; Koscheev, A.; Petrov, I.; Shenderova, O. Interpretation of Electrokinetic Measurements of Nanodiamond Particles. Diam. Relat. Mater. 2012, 30, 62–69. DOI: 10.1016/j.diamond.2012.10.004.
  • Arnault, J. C.; Petit, T.; Girard, H. A.; Gesset, C.; Combis-Schlumberger, M.; Sennour, M.; Koscheev, A.; Khomich, A. A.; Vlasov, I.; Shenderova, O. Surface Graphitization of Ozonetreated Detonation Nanodiamonds. Phys. Status Solidi A 2014, 211, 2739–2743. DOI: 10.1002/pssa.201431397.
  • Pozdnyakov, A. O.; Voznyakovskii, A. P.; Kalinin, A. V. Mechanism of Functionalization of the Surfaces of Detonation Nanodiamonds: Mass-Spectrometric Investigation. J. Superhard Mater. 2018, 40, 16–20. DOI: 10.3103/S1063457618010033.
  • Dideikin, A. T.; Aleksenskii, A. E.; Baidakova, M. V.; Brunkov, P. N.; Brzhezinskaya, M.; Davydov, V. Y.; Levitskii, V. S.; Kidalov, S. V.; Kukushkina, Y. A.; Kirilenko, D. A.; et al. Rehybridization of Carbon on Facets of Detonation Diamond Nanocrystals and Forming Hydrosols of Individual Particles. Carbon 2017, 122, 737–745. DOI: 10.1016/j.carbon.2017.07.013.
  • Mamyrin, B. A.; Shmikk, D. V. The Linear Mass Reflectron. Sov. Phys. JETP 1979, 49, 762–764.
  • Ahmed, A.; Mandal, S.; Gines, L.; Williams, O. A.; Cheng, C. Low Temperature Catalytic Reactivity of Nanodiamond in Molecular Hydrogen. Carbon 2016, 110, 438–442. DOI: 10.1016/j.carbon.2016.09.019.
  • Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Modification of the Surface Chemistry of Activated Carbons. Carbon 1999, 37, 1379–1389. DOI: 10.1016/S0008-6223(98)00333-9.
  • Li, N.; Ma, X.; Zha, Q.; Kim, K.; Chen, Y.; Song, C. Maximizing the Number of Oxygen-Containing Functional Groups on Activated Carbon by Using Ammonium Persulfate and Improving the Temperature-Programmed Desorption Characterization of Carbon Surface Chemistry. Carbon 2011, 49, 5002–5013. DOI: 10.1016/j.carbon.2011.07.015.
  • Razdyakonova, G. I.; Kokhanovskaya, O. A.; Likholobov, V. A. Influence of Environmental Conditions on Carbon Black Oxidation by Reactive Oxygen Intermediates. Proc. Eng. 2015, 113, 43–50. DOI: 10.1016/j.proeng.2015.07.287.
  • Al-Hammadi, S.; da Silva, G. Thermal Decomposition and Isomerization of Furfural and 2-Pyrone: A Theoretical Kinetic Study. Phys. Chem. Chem. Phys. 2021, 23, 2046–2054. DOI: 10.1039/D0CP05523A.
  • Paci, J. T.; Man, H. B.; Saha, B.; Ho, D.; Schatz, G. C. Understanding the Surfaces of Nanodiamonds. J. Phys. Chem. C 2013, 117, 17256–17267. DOI: 10.1021/jp404311a.
  • Kundu, S.; Nagaiah, T. C.; Xia, W.; Wang, Y.; Bron, M.; Schuhmman, W.; Muhler, M. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. J. Phys. Chem. C 2008, 112, 16869–16878. DOI: 10.1021/jp804413a.
  • Schmidlin, L.; Pichot, V.; Comet, M.; Josset, S.; Rabu, P.; Spitzer, D. Identification, Quantification and Modification of Detonation Nanodiamond Functional Groups. Diam. Relat. Mater. 2012, 22, 113–117. DOI: 10.1016/j.diamond.2011.12.009.
  • Ackermann, J.; Krueger, A. Highly Sensitive and Reproducible Quantification of Oxygenated Surface Groups on Carbon Nanomaterials. Carbon 2020, 163, 56–62. DOI: 10.1016/j.carbon.2020.02.088.
  • Zhukov, A. N.; Shvidchenko, A. V.; Yudina, E. B. Electrosurface Properties of Detonation Nanodiamond Hydrosols as Depending on the Size of Dispersed Particles. Colloid J. 2020, 82, 369–375. DOI: 10.1134/S1061933X20040171.
  • Stehlik, S.; Glatzel, T.; Pichot, V.; Pawlak, R.; Meyer, E.; Spitzer, D.; Rezek, B. Water Interaction with Hydrogenated and Oxidized Detonation Nanodiamonds – Microscopic and Spectroscopic Analyses. Diam. Relat. Mater. 2016, 63, 97–102. DOI: 10.1016/j.diamond.2015.08.016.
  • Kume, A.; Mochalin, V. N. Sonication-Assisted Hydrolysis of Ozone Oxidized Detonation Nanodiamond. Diam. Relat. Mater. 2020, 103, 107705. DOI: 10.1016/j.diamond.2020.107705.
  • Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G. Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamonds. J. Phys. Chem. C 2011, 115, 9827–9837. DOI: 10.1021/jp1102466.
  • Korobov, M. V.; Batuk, M. M.; Avramenko, N. V.; Ivanova, N. I.; Rozhkova, N. N.; Ōsawa, E. Do Primary Particles of Detonation Nanodiamond Form a Secondary Structure? Fullerenes Nanotub. Carbon Nanostructures 2010, 19, 58–62. DOI: 10.1080/1536383X.2010.490127.
  • Tomchuk, O.; V; Avdeev, M.; V; Aksenov, V. L.; Ivankov, O. I.; Len, A.; Turchenko, V. A.; Zabulonov, Y. L.; Bulavin, L. A. Regulation of Nanoporous Structure of Detonation Nanodiamond Powders by Pressure: SANS Study. Fullerenes Nanotub. Carbon Nanostructures 2022, 30, 171–176. DOI: 10.1080/1536383X.2021.1964478.
  • Lattimer, R. P. Pyrolysis Mass Spectrometry of Acrylic Acid Polymers. J. Anal. Appl. Pyrolysis 2003, 68-69, 3–14. DOI: 10.1016/S0165-2370(03)00080-9.
  • Beynon, J. H. Mass Spectrometry and Its Applications To Organic Chemistry; Elsevier publishing company: Amsterdam, Netherlands, 1960; p 375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.