407
Views
1
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterisation of binary eutectic phase change material/activated porous bio char/multi walled carbon nano tubes as composite phase change material

ORCID Icon &
Pages 75-89 | Received 23 Jun 2022, Accepted 07 Sep 2022, Published online: 15 Sep 2022

References

  • Kottala, R. K.; Ramaraj, B. K.; B S, J.; Vempally, M. G.; Lakshmanan, M. Experimental Investigation and Neural Network Modeling of Binary Eutectic/Expanded Graphite Composites for Medium Temperature Thermal Energy Storage. Energy Sources. Part A 2022, 44, 1–24. DOI: 10.1080/15567036.2022.2043490.
  • Ravi Kumar, K.; Balasubramanian, K. R.; Jinshah, B. S.; Abhishek, N. Experimental Analysis and Neural Network Model of MWCNTs Enhanced Phase Change Materials. Int. J. Thermophys. 2022, 43, 1–31. DOI: 10.1007/s10765-021-02937-3.
  • B S, J.; Ramaraj, B. K.; Kottala, R. K.; S P, S. A Complete Numerical Model for Low Temperature Composite Form-Stable Phase Change Material Slab Based on Dynamically Simplified Temperature Transforming Method. Energy Sources. Part A 2021, 43, 1–26. DOI: 10.1080/15567036.2021.1944403.
  • Senthilkumar, M.; Balasubramanian, K. R.; Kottala, R. K.; Sivapirakasam, S. P.; Maheswari, L. Characterization of Form-Stable Phase-Change Material for Solar Photovoltaic Cooling. J. Therm. Anal. Calorim. 2020, 141, 2487–2496. DOI: 10.1007/s10973-020-09521-1.
  • Marudaipillai, S. K.; Karuppudayar Ramaraj, B.; Kottala, R. K.; Lakshmanan, M. Experimental Study on Thermal Management and Performance Improvement of Solar PV Panel Cooling Using Form Stable Phase Change Material. Energy Sources. Part A 2020, 42, 1–18. DOI: 10.1080/15567036.2020.1806409.
  • Wen, R.; Wu, M.; Zhu, J.; Zhu, S.; Chen, W. Preparation and Characteristic of Ag Nanoparticle Modified Expanded Graphite for Enhancing Paraffin Phase Change Material Properties. Fullerenes, Nanotubes and Carbon Nanostruct. 2022, 30, 1046–1053. DOI: 10.1080/1536383X.2022.2066654.
  • Cao, Q.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K.; Yang, Z.; Yang, W. Paraffin-Based Shape-Stable Phase Change Materials with Graphene/Carbon Nanotube Three-Dimensional Network Structure. Fullerenes, Nanotubes and Carbon Nanostruct. 2019, 27, 492–497. DOI: 10.1080/1536383X.2019.1611562.
  • Mohamed, S. A.; Al-Sulaiman, F. A.; Ibrahim, N. I.; Zahir, M. H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B. S.; Sahin, A. Z. A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems. Renewable Sustainable Energy Rev. 2017, 70, 1072–1089. DOI: 10.1016/j.rser.2016.12.012.
  • Lin, Y.; Alva, G.; Fang, G. Review on Thermal Performances and Applications of Thermal Energy Storage Systems with Inorganic Phase Change Materials. Energy 2018, 165, 685–708. DOI: 10.1016/j.energy.2018.09.128.
  • Pethurajan, V.; Suresh, S.; Mojiri, A.; Konatt, A. J. Microencapsulation of Nitrate Salt for Solar Thermal Energy Storage-Synthesis, Characterisation and Heat Transfer Study. Sol. Energy Mater. Sol. Cells 2020, 206, 110308. DOI: 10.1016/j.solmat.2019.110308.
  • Zhou, D.; Eames, P. A Study of a Eutectic Salt of Lithium Nitrate and Sodium Chloride (87–13%) for Latent Heat Storage. Sol. Energy Mater. Sol. Cells 2017, 167, 157–161. DOI: 10.1016/j.solmat.2017.04.016.
  • Li, Y.; Wang, C. G.; Liu, G. Y.; Zhu, Q. Z.; Qiu, Z. Z. Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System. Int. J. Thermophys. 2019, 40, 1–12. DOI: 10.1007/s10765-019-2501-9.
  • Haider, M. Z.; Jin, X.; Sharma, R.; Pei, J.; Hu, J. W. Enhancing the Compressive Strength of Thermal Energy Storage Concrete Containing a Low-Temperature Phase Change Material Using Silica Fume and Multiwalled Carbon Nanotubes. Constr. Build. Mater. 2022, 314, 125659. DOI: 10.1016/j.conbuildmat.2021.125659.
  • Soleimanpour, S.; Sadrameli, S. M.; Mousavi, S.; Jafaripour, M. Preparation and Characterization of High Temperature Shape Stable NaNO3/Diatomite Phase Change Materials with Nanoparticles for Solar Energy Storage Applications. J. Storage. Mater. 2022, 45, 103735. DOI: 10.1016/j.est.2021.103735.
  • Xie, N.; Luo, J.; Li, Z.; Huang, Z.; Gao, X.; Fang, Y.; Zhang, Z. Salt Hydrate/Expanded Vermiculite Composite as a Form-Stable Phase Change Material for Building Energy Storage. Sol. Energy Mater. Sol. Cells 2019, 189, 33–42. DOI: 10.1016/j.solmat.2018.09.016.
  • Lin, Y.; Li, X.; Huang, Q. Preparation and Characterization of Expanded Perlite/Wood-Magnesium Composites as Building Insulation Materials. Energy Build. 2021, 231, 110637. DOI: 10.1016/j.enbuild.2020.110637.
  • Khadiran, T.; Hussein, M. Z.; Zainal, Z.; Rusli, R. Activated Carbon Derived from Peat Soil as a Framework for the Preparation of Shape-Stabilized Phase Change Material. Energy 2015, 82, 468–478. DOI: 10.1016/j.energy.2015.01.057.
  • Khadiran, T.; Hussein, M. Z.; Zainal, Z.; Rusli, R. Shape-Stabilised n-Octadecane/Activated Carbon Nanocomposite Phase Change Material for Thermal Energy Storage. J. Taiwan Inst. Chem. Eng. 2015, 55, 189–197. DOI: 10.1016/j.jtice.2015.03.028.
  • Atinafu, D. G.; Chang, S. J.; Kim, K. H.; Kim, S. Tuning Surface Functionality of Standard Biochars and the Resulting Uplift Capacity of Loading/Energy Storage for Organic Phase Change Materials. Chem. Engin. J. 2020, 394, 125049. DOI: 10.1016/j.cej.2020.125049.
  • Hekimoğlu, G.; Sarı, A.; Arunachalam, S.; Arslanoğlu, H.; Gencel, O. Porous Biochar/Heptadecane Composite Phase Change Material with Leak-Proof, High Thermal Energy Storage Capacity and Enhanced Thermal Conductivity. Powder Technol. 2021, 394, 1017–1025. DOI: 10.1016/j.powtec.2021.09.030.
  • Nicholas, A. F.; Hussein, M. Z.; Zainal, Z.; Khadiran, T. Palm Kernel Shell Activated Carbon as an Inorganic Framework for Shape-Stabilized Phase Change Material. Nanomaterials 2018, 8, 689. DOI: 10.3390/nano8090689.
  • Zhang, W.; Zhang, X.; Zhang, X.; Yin, Z.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Huang, Z. Lauric-Stearic Acid Eutectic Mixture/Carbonized Biomass Waste Corn Cob Composite Phase Change Materials: Preparation and Thermal Characterization. Thermochim. Acta 2019, 674, 21–27. DOI: 10.1016/j.tca.2019.01.022.
  • Xu, Y.; Zhang, X.; Wu, B.; Xu, Y.; Wen, R.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Huang, Z. Preparation and Performance of Shape-Stable Phase Change Materials Based on Carbonized-Abandoned Orange Peel and Paraffin. Fullerenes, Nanotubes and Carbon Nanostruct. 2019, 27, 289–298. DOI: 10.1080/1536383X.2018.1543279.
  • Keshteli, A. N.; Sheikholeslami, M. Nanoparticle Enhanced PCM Applications for Intensification of Thermal Performance in Building: A Review. J. Mol. Liq. 2019, 274, 516–533. DOI: 10.1016/j.molliq.2018.10.151.
  • Rostami, S.; Afrand, M.; Shahsavar, A.; Sheikholeslami, M.; Kalbasi, R.; Aghakhani, S.; Shadloo, M. S.; Oztop, H. F. A Review of Melting and Freezing Processes of PCM/nano-PCM and Their Application in Energy Storage. Energy 2020, 211, 118698. DOI: 10.1016/j.energy.2020.118698.
  • Dinesh, R.; Hussain, S. I.; Roseline, A. A.; Kalaiselvam, S. Experimental Investigation on Heat Transfer Behavior of the Novel Ternary Eutectic PCM Embedded with MWCNT for Thermal Energy Storage Systems. J. Therm. Anal. Calorim. 2021, 145, 2935–2949. DOI: 10.1007/s10973-020-09726-4.
  • Fikri, M. A.; Pandey, A. K.; Samykano, M.; Kadirgama, K.; George, M.; Saidur, R.; Selvaraj, J.; Abd Rahim, N.; Sharma, K.; Tyagi, V. V. Thermal Conductivity, Reliability, and Stability Assessment of Phase Change Material (PCM) Doped with Functionalized Multi-Wall Carbon Nanotubes (FMWCNTs). J. Storage. Mater. 2022, 50, 104676. DOI: 10.1016/j.est.2022.104676.
  • Liu, P.; Gu, X.; Rao, J.; Liu, S.; Wang, B.; Bian, L. Preparation and Thermal Properties of Lauric Acid/Raw Fly Ash/Carbon Nanotubes Composite as Phase Change Material for Thermal Energy Storage. Fullerenes, Nanotubes and Carbon Nanostruct. 2020, 28, 934–944. DOI: 10.1080/1536383X.2020.1786815.
  • Kumaresan, V.; Raghavan, K. S.; Vikram, M. P.; Iyyappan, J. Expedited Energy Charging of Water Using Natural Graphite Flake for Cool Thermal Storage. Fullerenes, Nanotubes and Carbon Nanostruct. 2021, 29, 670–677. DOI: 10.1080/1536383X.2021.1879056.
  • Atinafu, D. G.; Wi, S.; Yun, B. Y.; Kim, S. Engineering Biochar with Multiwalled Carbon Nanotube for Efficient Phase Change Material Encapsulation and Thermal Energy Storage. Energy 2021, 216, 119294. DOI: 10.1016/j.energy.2020.119294.
  • Moffat, R. J. Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. DOI: 10.1016/0894-1777(88)90043-X.
  • Huang, Z.; Luo, Z.; Gao, X.; Fang, X.; Fang, Y.; Zhang, Z. Investigations on the Thermal Stability, Long-Term Reliability of LiNO3/KCl–Expanded Graphite Composite as Industrial Waste Heat Storage Material and Its Corrosion Properties with Metals. Appl. Energy 2017, 188, 521–528. DOI: 10.1016/j.apenergy.2016.12.010.
  • Ren, Y.; Xu, C.; Yuan, M.; Ye, F.; Ju, X.; Du, X. Ca (NO3)2-NaNO3/Expanded Graphite Composite as a Novel Shape-Stable Phase Change Material for Mid-to High-Temperature Thermal Energy Storage. Energy Convers. Manage. 2018, 163, 50–58. DOI: 10.1016/j.enconman.2018.02.057.
  • Li, Y.; Jiang, S. L.; Wang, C. G.; Zhu, Q. Z. Effect of EG Particle Size on the Thermal Properties of NaNO3–NaCl/EG Shaped Composite Phase Change Materials. Energy 2022, 239, 122062. DOI: 10.1016/j.energy.2021.122062.
  • Saranprabhu, M. K.; Chandini, D.; Bharathidasan, P.; Devaraj, S.; Rajan, K. S. Lowered Total Solidification Time and Increased Discharge Rate of Reduced Graphene Oxide-Solar Salt Composites: Potential for Deployment in Latent Heat Thermal Energy Storage System. Sol. Energy 2020, 204, 466–475. DOI: 10.1016/j.solener.2020.04.072.
  • Xiong, Y.; Wang, Z.; Sun, M.; Wu, Y.; Xu, P.; Qian, X.; Li, C.; Ding, Y.; Ma, C. Enhanced Thermal Energy Storage of Nitrate Salts by Silica Nanoparticles for Concentrating Solar Power. Int. J. Energy Res. 2021, 45, 5248–5262. DOI: 10.1002/er.6142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.