182
Views
0
CrossRef citations to date
0
Altmetric
Articles

Three dimensional Ti3C2Tx and rGO hybrid supported Pt catalyst for the high performance hydrogen evolution reaction

, , , , , & show all
Pages 130-135 | Received 01 Jul 2022, Accepted 12 Sep 2022, Published online: 20 Sep 2022

References

  • Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The Hydrogen Economy. Phys. Today. 2004, 57, 39–44. DOI: 10.1063/1.1878333.
  • Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High Capacity Hydrogen Storage Materials: attributes for Automotive Applications and Techniques for Materials Discovery. Chem. Soc. Rev. 2010, 39, 656–675. DOI: 10.1039/b802882f.
  • Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angew. Chem. Int. Ed. Engl. 2015, 54, 52–65. DOI: 10.1002/anie.201407031.
  • Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Volcano Plots in Hydrogen Electrocatalysis - Uses and Abuses. Beilstein J. Nanotechnol. 2014, 5, 846–854. DOI: 10.3762/bjnano.5.96.
  • Chandra, D.; Takama, D.; Masaki, T.; Sato, T.; Abe, N.; Togashi, T.; Kurihara, M.; Saito, K.; Yui, T.; Yagi, M. Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate IrOx(OH)(y) Nanoparticle Films for Water Oxidation. ACS Catal. 2016, 6, 3946–3954. DOI: 10.1021/acscatal.6b00621.
  • Zhao, Z.; Liu, H.; Gao, W.; Xue, W.; Liu, Z.; Huang, J.; Pan, X.; Huang, Y. Surface-Engineered PtNi-O Nanostructure with Record-High Performance for Electrocatalytic Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050. DOI: 10.1021/jacs.8b04770.
  • Zhu, M.; Sun, J.; Li, C.; Han, C.; Shan, Y.; He, J.; Jia, J.; Wu, W.; Yang, G. Electrospun SiO2/WO3/NiWO4 Decorated Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution. Fulleren. Nanotube Carbon Nanostruct. 2019, 27, 506–513. DOI: 10.1080/1536383X.2019.1609950.
  • Syed, N.; Huang, J.; Feng, Y. Fullerene Nanorods Supported Cobalt Nickel Sulfide Composite as Efficient Electrocatalyst for Oxygen Evolution. Fulleren. Nanotube Carbon Nanostruct. 2022, 30, 744–750. DOI: 10.1080/1536383X.2021.2018680.
  • Zhang, X.; Wu, Q.; Du, Z.; Zheng, Y.; Li, Q. Green Synthesis of g-C3N4-Pt Catalyst and Application to Photocatalytic Hydrogen Evolution from Water Splitting. Fulleren. Nanotube Carbon Nanostruct. 2018, 26, 688–695. DOI: 10.1080/1536383X.2018.1469006.
  • Kong, L.; Yu, T.; Zhan, J.; Zhang, Y.; Li, G.; Wang, H.; Wang, X.; Cheng, L.; Wang, F. Study on the Performance of NaBH4 Using Ru-Co/CNTs Catalyst to Catalyze Alcoholysis to Produce Hydrogen. Fulleren. Nanotube Carbon Nanostruct. 2020, 28, 891–899. DOI: 10.1080/1536383X.2020.1777544.
  • Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.-L.; Liu, R.-S.; Han, C.-P.; Li, Y.; Gogotsi, Y.; Wang, G. Single Platinum Atoms Immobilized on an MXene as an Efficient Catalyst for the Hydrogen Evolution Reaction. Nat. Catal. 2018, 1, 985–992. DOI: 10.1038/s41929-018-0195-1.
  • Wang, D.; Liu, Z.-P.; Yang, W.-M. Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Hydrogen Evolution on TiO2 Support: A DFT Study. ACS Catal. 2018, 8, 7270–7278. DOI: 10.1021/acscatal.8b01886.
  • Zhang, H.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. D. Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2018, 28, 1807086. DOI: 10.1002/adfm.201807086.
  • Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)(2)-Pt Interfaces. Science. 2011, 334, 1256–1260. DOI: 10.1126/science.1211934.
  • Zhang, K.; Hong, K.; Suh, J. M.; Lee, T. H.; Kwon, O.; Shokouhimehr, M.; Jang, H. W. Facile Synthesis of Monodispersed Pd Nanocatalysts Decorated on Graphene Oxide for Reduction of Nitroaromatics in Aqueous Solution. Res. Chem. Intermed. 2019, 45, 599–611. DOI: 10.1007/s11164-018-3621-8.
  • Zhang, K.; Suh, J. M.; Lee, T. H.; Cha, J. H.; Choi, J.-W.; Jang, H. W.; Varma, R. S.; Shokouhimehr, M. Copper Oxide–Graphene Oxide Nanocomposite: efficient Catalyst for Hydrogenation of Nitroaromatics in Water. Nano Converg. 2019, 6, 6–7. DOI: 10.1186/s40580-019-0176-3.
  • Lee, I.; Joo, J. B.; Shokouhimehr, M. Graphene Derivatives Supported Nanocatalysts for Oxygen Reduction Reaction. Chinese J. Catal. 2015, 36, 1799–1810. DOI: 10.1016/S1872-2067(15)60971-8.
  • Hong, K.; Sajjadi, M.; Suh, J. M.; Zhang, K.; Nasrollahzadeh, M.; Jang, H. W.; Varma, R. S.; Shokouhimehr, M. Palladium Nanoparticles on Assorted Nanostructured Supports: applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. ACS Appl. Nano Mater. 2020, 3, 2070–2103. DOI: 10.1021/acsanm.9b02017.
  • Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science. 2013, 341, 1502–1505. DOI: 10.1126/science.1241488.
  • Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene Nanosheets for High-Power Sodium-Ion Hybrid Capacitors. Nat Commun. 2015, 6, 1–6. DOI: 10.1038/ncomms7544.
  • Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science. 2016, 353, 1137–1140. DOI: 10.1126/science.aag2421.
  • Chen, C.; Xie, X.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.; Urbankowski, P.; Miao, L.; Jiang, J.; Gogotsi, Y. MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2018, 57, 1846–1850. DOI: 10.1002/anie.201710616.
  • Bao, W.; Liu, L.; Wang, C.; Choi, S.; Wang, D.; Wang, G. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1702485. DOI: 10.1002/aenm.201702485.
  • Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature. 2014, 516, 78–81. DOI: 10.1038/nature13970.
  • Xiu, L.; Wang, Z.; Yu, M.; Wu, X.; Qiu, J. Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano. 2018, 12, 8017–8028. DOI: 10.1021/acsnano.8b02849.
  • Ren, B.; Li, D.; Jin, Q.; Cui, H.; Wang, C. A Self-Supported Porous WN Nanowire Array: An Efficient 3D Electrocatalyst for the Hydrogen Evolution Reaction. J. Mater. Chem. A. 2017, 5, 19072–19078. DOI: 10.1039/C7TA04923D.
  • Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano. 2010, 4, 4324–4330. DOI: 10.1021/nn101187z.
  • Le, T. A.; Bui, Q. V.; Tran, N. Q.; Cho, Y.; Hong, Y.; Kawazoe, Y.; Lee, H. Synergistic Effects of Nitrogen Doping on MXene for Enhancement of Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2019, 7, 16879–16888. DOI: 10.1021/acssuschemeng.9b04470.
  • Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of Electronic Structures of Au Clusters Stabilized by Poly(N-Vinyl-2-Pyrrolidone) on Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093. DOI: 10.1021/ja810045y.
  • Hammer, B.; Morikawa, Y.; Norskov, J. K. CO Chemisorption at Metal Surfaces and Overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144. DOI: 10.1103/PhysRevLett.76.2141.
  • Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. Catalytic Activity-d-Band Center Correlation for the O-2 Reduction Reaction on Platinum in Alkaline Solutions. J. Phys. Chem. C. 2007, 111, 404–410. DOI: 10.1021/jp065181r.
  • Ma, Y.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W.; Rao, J.; Luo, S.; Wang, J.; Jiang, X.; Liu, Z.; et al. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano. 2018, 12, 3209–3216. 2 DOI: 10.1021/acsnano.7b06909.
  • Shi, Z.; Wang, Y.; Lin, H.; Zhang, H.; Shen, M.; Xie, S.; Zhang, Y.; Gao, Q.; Tang, Y. Porous nanoMoC@Graphite Shell Derived from a MOFs-Directed Strategy: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. J. Mater. Chem. A. 2016, 4, 6006–6013. DOI: 10.1039/C6TA01900E.
  • Liu, N.; Yang, L.; Wang, S.; Zhong, Z.; He, S.; Yang, X.; Gao, Q.; Tang, Y. Ultrathin MoS2 Nanosheets Growing within an in-Situ-Formed Template as Efficient Electrocatalysts for Hydrogen Evolution. J. Power Source. 2015, 275, 588–594. DOI: 10.1016/j.jpowsour.2014.11.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.