196
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and optoelectrical properties of chemically unzipped carbon nanotubes by modified Hummers’ method

, &
Pages 147-156 | Received 26 Jul 2022, Accepted 23 Sep 2022, Published online: 06 Oct 2022

References

  • Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655. DOI: 10.1038/nmat1967.
  • Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; Yu, V. Experimental Review of Graphene. ISRN Condensed Matter. Phys. 2012, 2012, 1–56. DOI: 10.5402/2012/501686.
  • Fouda, A. N.; Salem, A.; El-Tantawy, F.; Salem, H.; Duraia, E. S. M. Hydrothermal Synthesis of High Quality Graphene Nanosheets Anchored by Uniform and Well Distributed Silicon Nanoparticles. Superlattices Microstruct. 2018, 124, 240–247. DOI: 10.1016/j.spmi.2018.08.025.
  • Duraia, E. S. M.; Abdullin, K. A. Ferromagnetic Resonance of Cobalt Nanoparticles Used as a Catalyst for the Carbon Nanotubes Synthesis. J. Magn. Magn. Mater. 2009, 321, L69–L72. DOI: 10.1016/j.jmmm.2009.08.003.
  • Mahmoud, A.; Duraia, E. S. M.; Fouda, A. N. Synthesis and Electrical Properties of Graphene–Manganese Oxide Hybrid Nanostructures. J. Mater. Sci: Mater. Electron. 2022, 33, 1567–1576. DOI: 10.1007/s10854-021-07676-7.
  • Adebiyi, B. M.; Duraia, E. S. M.; Beall, G. W. One Pot Synthesis of Nickel Ferrite-Graphitic Layers Nanocomposite with Inverted Magnetic Hysteresis. J. Magn. Magn. Mater. 2019, 489, 165401. DOI: 10.1016/j.jmmm.2019.165401.
  • Charlier, J.-C.; Blase, X.; Roche, S. Electronic and Transport Properties of Nanotubes. Rev. Mod. Phys. 2007, 79, 677–732. DOI: 10.1103/RevModPhys.79.677.
  • Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature 1993, 363, 603–605. DOI: 10.1038/363603a0.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Yahyazadeh, A.; Khoshandam, B. Carbon Nanotube Synthesis via the Catalytic Chemical Vapor Deposition of Methane in the Presence of Iron, Molybdenum, and Iron–Molybdenum Alloy Thin Layer Catalysts. Results Phys. 2017, 7, 3826–3837. DOI: 10.1016/j.rinp.2017.10.001.
  • Maser, W. K.; Muñoz, E.; Benito, A. M.; Martı́nez, M. T.; de la Fuente, G. F.; Maniette, Y.; Anglaret, E.; Sauvajol, J.-L. Production of High-Density Single-Walled Nanotube Material by a Simple Laser-Ablation Method. Chem. Phys. Lett. 1998, 292, 587–593. DOI: 10.1016/S0009-2614(98)00776-3.
  • Takeuchi, K.; Hayashi, T.; Kim, Y. A. The State-of-the-Art Science and Applications of Carbon Nanotubes. Nanosyst. Phys. Chem. Mathe. 2014, 5, 15–24. https://cyberleninka.ru/article/n/the-state-of-the-art-science-and-applications-of-carbon-nanotubes
  • Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence. Phys. Rev. B Condens. Matter. 1996, 54, 17954–17961. DOI: 10.1103/physrevb.54.17954.
  • Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Electronic and Magnetic Properties of Nanographite Ribbons. Phys. Rev. B 1999, 59, 8271–8282. DOI: 10.1103/PhysRevB.59.8271.
  • Xu, W.; Lee, T. Recent Progress in Fabrication Techniques of Graphene Nanoribbons. Mater. Horiz 2016, 3, 186–207. DOI: 10.1039/C5MH00288E.
  • Chen, Z.; Lin, Y.-M.; Rooks, M. J.; Avouris, P. Graphene Nano-Ribbon Electronics. Physica E 2007, 40, 228–232. DOI: 10.1016/j.physe.2007.06.020.
  • Celis, A.; Nair, M. N.; Taleb-Ibrahimi, A.; Conrad, E. H.; Berger, C.; de Heer, W. A.; Tejeda, A. Graphene Nanoribbons: Fabrication, Properties and Devices. J. Phys. D: Appl. Phys 2016, 49, 143001. DOI: 10.1088/0022-3727/49/14/143001.
  • Huang, H.; Chen, S.; Wee, A. 2014. Epitaxial Growth of Graphene on Silicon Carbide (Sic). Graphene; Elsevier: Amsterdam, Netherlands, pp. 177–198.
  • Chen, Z.; Zhang, W.; Palma, C.-A.; Lodi Rizzini, A.; Liu, B.; Abbas, A.; Richter, N.; Martini, L.; Wang, X.-Y.; Cavani, N.; et al. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. J. Am. Chem. Soc. 2016, 138, 15488–15496. DOI: 10.1021/jacs.6b10374.
  • Duraia, E. S. M.; Das, S.; Beall, G. W. Humic Acid Nanosheets Decorated by Tin Oxide Nanoparticles and There Humidity Sensing Behavior. Sens. Actuat. B 2019, 280, 210–218. DOI: 10.1016/j.snb.2018.10.054.
  • Fouda, A. N.; El Shazly, M. D.; Almaqwashi, A. Facile and Scalable Green Synthesis of N-Doped Graphene/Cnts Nanocomposites via Ball Milling. Ain Shams Eng. J. 2021, 12, 1017–1024. DOI: 10.1016/j.asej.2020.04.011.
  • Duraia, E. S. M.; Niu, S.; Beall, G. W. Humic Acid-Derived Graphene–Sno2 Nanocomposites for High Capacity Lithium-Ion Battery Anodes. J. Mater. Sci.Mater. Electron. 2018, 29, 8456–8464. DOI: 10.1007/s10854-018-8858-x.
  • Duraia, E. S. M.; Fahami, A.; Beall, G. W. Microwave-Assisted Synthesis of N-Doped Graphene-Wrapped Mno2 Nanoflowers. J. Electron. Mater. 2018, 47, 7288–7295. DOI: 10.1007/s11664-018-6666-y.
  • Felten, A.; McManus, D.; Rice, C.; Nittler, L.; Pireaux, J.-J.; Casiraghi, C. Insight into Hydrogenation of Graphene: Effect of Hydrogen Plasma Chemistry. Appl. Phys. Lett. 2014, 105, 183104. DOI: 10.1063/1.4901226.
  • Mohammadi, S.; Kolahdouz, Z.; Mohajerzadeh, S. Hydrogenation-Assisted Unzipping of Carbon Nanotubes to Realize Graphene Nano-Sheets. J. Mater. Chem. C 2013, 1, 1309–1316. DOI: 10.1039/C2TC00408A.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Hu, Y.; Song, S.; Lopez, V. A. Effects of Oxidation on the Defect of Reduced Graphene Oxides in Graphene Preparation. J. Colloid. Interface. Sci. 2015, 450, 68–73. DOI: 10.1016/j.jcis.2015.02.059.
  • Sohail, M.; Saleem, M.; Ullah, S.; Saeed, N.; Afridi, A.; Khan, M.; Arif, M. Modified and Improved Hummer’s Synthesis of Graphene Oxide for Capacitors Applications. Mod. Electron. Mater. 2017, 3, 110–116. DOI: 10.1016/j.moem.2017.07.002.
  • Sengupta, I.; Kumar, S. S. S. S.; Pal, S. K.; Chakraborty, S. Investigating the Effect of Graphite Pretreatment and Contribution of the Oxidizer in the Synthesis of Graphite Oxide by Hummers Approach. Fulleren. Nanotub. Carbon Nanostruct. 2022, 30, 626–637. DOI: 10.1080/1536383X.2021.1987414.
  • Chitriv, S. P.; Chaudhary, A. K.; Yellumahanti, S. R.; Vijayakumar, R. P. Functionalization of Unzipped Multi-Walled Carbon Nanotube Oxides with L-Tyrosine for the Adsorption of Methylene Blue. Fulleren. Nanotub. Carbon Nanostruct. 2022, 1–8. DOI: 10.1080/1536383X.2022.2084080.
  • Vardharajula, S.; Ali, S. Z.; Tiwari, P. M.; Eroğlu, E.; Vig, K.; Dennis, V. A.; Singh, S. R. Functionalized Carbon Nanotubes: Biomedical Applications. Int. J. Nanomed. 2012, 7, 5361–5374. DOI: 10.2147/IJN.S35832.
  • Khalili, D. Graphene Oxide: A Promising Carbocatalyst for the Regioselective Thiocyanation of Aromatic Amines, Phenols, Anisols and Enolizable Ketones by Hydrogen Peroxide/Kscn in Water. New J. Chem. 2016, 40, 2547–2553. DOI: 10.1039/C5NJ02314A.
  • Azri, F. A.; Sukor, R.; Hajian, R.; Yusof, N. A.; Bakar, F. A.; Selamat, J. Modification Strategy of Screen-Printed Carbon Electrode with Functionalized Multi-Walled Carbon Nanotube and Chitosan Matrix for Biosensor Development. Asian J. Chem. 2017, 29, 31–36. DOI: 10.14233/ajchem.2017.20104.
  • Ahmed, D. S.; Haider, A. J.; Mohammad, M. Comparesion of Functionalization of Multi-Walled Carbon Nanotubes Treated by Oil Olive and Nitric Acid and Their Characterization. Energy Proc. 2013, 36, 1111–1118. DOI: 10.1016/j.egypro.2013.07.126.
  • El-Shazly, M. D.; Beall, G. W. Large Temperature-Induced Red Shift of G-Band of Functionalized Graphene Nanosheets Synthesized from Humic Acid. Superlattices Microstruct. 2016, 98, 379–384. DOI: 10.1016/j.spmi.2016.09.002.
  • Hummers, W. S.; Jr,.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X.-Y. Hot-Electron Transfer from Semiconductor Nanocrystals. Science 2010, 328, 1543–1547. DOI: 10.1126/science.1185509.
  • Toušek, J. Photovoltaic Effect in Schottky Diode. Phys. Stat. Sol. (a) 1991, 128, 531–538. DOI: 10.1002/pssa.2211280230.
  • Chen, C.-C.; Aykol, M.; Chang, C.-C.; Levi, A. F. J.; Cronin, S. B. Graphene-Silicon Schottky Diodes. Nano Lett. 2011, 11, 1863–1867. DOI: 10.1021/nl104364c.
  • Antonio, D. B.; Luongo, G. Hybrid Graphene-Silicon Schottky Photodiode with Intrinsic Gating Effect. 2D Mater. 2017, 4, 025075. DOI: 10.1088/2053-1583/aa6aa0.
  • Amirmazlaghani, M.; Raissi, F.; Habibpour, O.; Vukusic, J.; Stake, J. Graphene-Si Schottky Ir Detector. IEEE J. Quantum Electron 2013, 49, 589–594. DOI: 10.1109/JQE.2013.2261472.
  • Schroder, D. K. Semiconductor Material and Device Characterization; John Wiley & Sons: Hoboken, FL, 2015.
  • Raissi, F. A Possible Explanation for High Quantum Efficiency of Ptsi/Porous Si Schottky Detectors. IEEE Trans. Electron Devices 2003, 50, 1134–1137. DOI: 10.1109/TED.2003.812087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.